##// END OF EJS Templates
push: propagate --new-branch and --ssh options when pushing subrepos...
push: propagate --new-branch and --ssh options when pushing subrepos Up until now the all the push command options were ignored when pushing subrepos. In particular, the fact that the --new-branch command was not passed down to subrepos made it not possible to push a repo when any of its subrepos had a new branch, even if you used the --new-branch option of the push command. In addition the error message was confusing since it showed the following hint: "--new-branch hint: use 'hg push --new-branch' to create new remote branches". However using the --new_branch flag did not fix the problem, as it was ignored when pushing subrepos. This patch passes the --new-branch and --ssh flags to every subrepo that is pushed. Issues/Limitations: - All subrepo types get these flags, but only the mercurial subrepos use them. - It is no longer possible to _not_ pass down these flags to subrepos when pushing: * An alternative would be to introduce a --subrepos flag that should be used to pass down these flags to the subrepos. * If we did this, it could make sense to make the --force flag respect this new --subrepos flag as well for consistency's sake. - Matt suggested that the ssh related flags could also be passed down to subrepos during pull and clone. However it seems that it would be the "update" command that would need to get those, since subrepos are only pulled on update. In any case I'd prefer to leave that for a later patch.

File last commit:

r14131:03e1c2d3 default
r15708:309e4949 default
Show More
graphmod.py
139 lines | 4.2 KiB | text/x-python | PythonLexer
# Revision graph generator for Mercurial
#
# Copyright 2008 Dirkjan Ochtman <dirkjan@ochtman.nl>
# Copyright 2007 Joel Rosdahl <joel@rosdahl.net>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
"""supports walking the history as DAGs suitable for graphical output
The most basic format we use is that of::
(id, type, data, [parentids])
The node and parent ids are arbitrary integers which identify a node in the
context of the graph returned. Type is a constant specifying the node type.
Data depends on type.
"""
from mercurial.node import nullrev
CHANGESET = 'C'
def dagwalker(repo, revs):
"""cset DAG generator yielding (id, CHANGESET, ctx, [parentids]) tuples
This generator function walks through revisions (which should be ordered
from bigger to lower). It returns a tuple for each node. The node and parent
ids are arbitrary integers which identify a node in the context of the graph
returned.
"""
if not revs:
return
cl = repo.changelog
lowestrev = min(revs)
gpcache = {}
knownrevs = set(revs)
for rev in revs:
ctx = repo[rev]
parents = sorted(set([p.rev() for p in ctx.parents()
if p.rev() in knownrevs]))
mpars = [p.rev() for p in ctx.parents() if
p.rev() != nullrev and p.rev() not in parents]
for mpar in mpars:
gp = gpcache.get(mpar)
if gp is None:
gp = gpcache[mpar] = grandparent(cl, lowestrev, revs, mpar)
if not gp:
parents.append(mpar)
else:
parents.extend(g for g in gp if g not in parents)
yield (ctx.rev(), CHANGESET, ctx, parents)
def nodes(repo, nodes):
"""cset DAG generator yielding (id, CHANGESET, ctx, [parentids]) tuples
This generator function walks the given nodes. It only returns parents
that are in nodes, too.
"""
include = set(nodes)
for node in nodes:
ctx = repo[node]
parents = set([p.rev() for p in ctx.parents() if p.node() in include])
yield (ctx.rev(), CHANGESET, ctx, sorted(parents))
def colored(dag):
"""annotates a DAG with colored edge information
For each DAG node this function emits tuples::
(id, type, data, (col, color), [(col, nextcol, color)])
with the following new elements:
- Tuple (col, color) with column and color index for the current node
- A list of tuples indicating the edges between the current node and its
parents.
"""
seen = []
colors = {}
newcolor = 1
for (cur, type, data, parents) in dag:
# Compute seen and next
if cur not in seen:
seen.append(cur) # new head
colors[cur] = newcolor
newcolor += 1
col = seen.index(cur)
color = colors.pop(cur)
next = seen[:]
# Add parents to next
addparents = [p for p in parents if p not in next]
next[col:col + 1] = addparents
# Set colors for the parents
for i, p in enumerate(addparents):
if not i:
colors[p] = color
else:
colors[p] = newcolor
newcolor += 1
# Add edges to the graph
edges = []
for ecol, eid in enumerate(seen):
if eid in next:
edges.append((ecol, next.index(eid), colors[eid]))
elif eid == cur:
for p in parents:
edges.append((ecol, next.index(p), color))
# Yield and move on
yield (cur, type, data, (col, color), edges)
seen = next
def grandparent(cl, lowestrev, roots, head):
"""Return all ancestors of head in roots which revision is
greater or equal to lowestrev.
"""
pending = set([head])
seen = set()
kept = set()
llowestrev = max(nullrev, lowestrev)
while pending:
r = pending.pop()
if r >= llowestrev and r not in seen:
if r in roots:
kept.add(r)
else:
pending.update([p for p in cl.parentrevs(r)])
seen.add(r)
return sorted(kept)