##// END OF EJS Templates
revlog: rewrite censoring logic...
revlog: rewrite censoring logic I was able to corrupt a revlog relatively easily with the existing censoring code. The underlying problem is that the existing code doesn't fully take delta chains into account. When copying revisions that occur after the censored revision, the delta base can refer to a censored revision. Then at read time, things blow up due to the revision data not being a compressed delta. This commit rewrites the revlog censoring code to take a higher-level approach. We now create a new revlog instance pointing at temp files. We iterate through each revision in the source revlog and insert those revisions into the new revlog, replacing the censored revision's data along the way. The new implementation isn't as efficient as the old one. This is because it will fully engage delta computation on insertion. But I don't think it matters. The new implementation is a bit hacky because it attempts to reload the revlog instance with a new revlog index/data file. This is fragile. But this is needed because the index (which could be backed by C) would have a cached copy of the old, possibly changed data and that could lead to problems accessing index or revision data later. One benefit of the new approach is that we integrate with the transaction. The old revlog is backed up and if the transaction is rolled back, the original revlog is restored. As part of this, we had to teach the transaction about the store vfs. I'm not super keen about this. But this was the easiest way to hook things up to the transaction. We /could/ just ignore the transaction like we were doing before. But any file mutation should be governed by transaction semantics, including undo during rollback. Differential Revision: https://phab.mercurial-scm.org/D4869

File last commit:

r38001:bbdc1bc5 default
r40092:324b4b10 default
Show More
logexchange.py
152 lines | 4.6 KiB | text/x-python | PythonLexer
# logexchange.py
#
# Copyright 2017 Augie Fackler <raf@durin42.com>
# Copyright 2017 Sean Farley <sean@farley.io>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
from .node import hex
from . import (
util,
vfs as vfsmod,
)
# directory name in .hg/ in which remotenames files will be present
remotenamedir = 'logexchange'
def readremotenamefile(repo, filename):
"""
reads a file from .hg/logexchange/ directory and yields it's content
filename: the file to be read
yield a tuple (node, remotepath, name)
"""
vfs = vfsmod.vfs(repo.vfs.join(remotenamedir))
if not vfs.exists(filename):
return
f = vfs(filename)
lineno = 0
for line in f:
line = line.strip()
if not line:
continue
# contains the version number
if lineno == 0:
lineno += 1
try:
node, remote, rname = line.split('\0')
yield node, remote, rname
except ValueError:
pass
f.close()
def readremotenames(repo):
"""
read the details about the remotenames stored in .hg/logexchange/ and
yields a tuple (node, remotepath, name). It does not yields information
about whether an entry yielded is branch or bookmark. To get that
information, call the respective functions.
"""
for bmentry in readremotenamefile(repo, 'bookmarks'):
yield bmentry
for branchentry in readremotenamefile(repo, 'branches'):
yield branchentry
def writeremotenamefile(repo, remotepath, names, nametype):
vfs = vfsmod.vfs(repo.vfs.join(remotenamedir))
f = vfs(nametype, 'w', atomictemp=True)
# write the storage version info on top of file
# version '0' represents the very initial version of the storage format
f.write('0\n\n')
olddata = set(readremotenamefile(repo, nametype))
# re-save the data from a different remote than this one.
for node, oldpath, rname in sorted(olddata):
if oldpath != remotepath:
f.write('%s\0%s\0%s\n' % (node, oldpath, rname))
for name, node in sorted(names.iteritems()):
if nametype == "branches":
for n in node:
f.write('%s\0%s\0%s\n' % (n, remotepath, name))
elif nametype == "bookmarks":
if node:
f.write('%s\0%s\0%s\n' % (node, remotepath, name))
f.close()
def saveremotenames(repo, remotepath, branches=None, bookmarks=None):
"""
save remotenames i.e. remotebookmarks and remotebranches in their
respective files under ".hg/logexchange/" directory.
"""
wlock = repo.wlock()
try:
if bookmarks:
writeremotenamefile(repo, remotepath, bookmarks, 'bookmarks')
if branches:
writeremotenamefile(repo, remotepath, branches, 'branches')
finally:
wlock.release()
def activepath(repo, remote):
"""returns remote path"""
local = None
# is the remote a local peer
local = remote.local()
# determine the remote path from the repo, if possible; else just
# use the string given to us
rpath = remote
if local:
rpath = remote._repo.root
elif not isinstance(remote, bytes):
rpath = remote._url
# represent the remotepath with user defined path name if exists
for path, url in repo.ui.configitems('paths'):
# remove auth info from user defined url
noauthurl = util.removeauth(url)
if url == rpath or noauthurl == rpath:
rpath = path
break
return rpath
def pullremotenames(localrepo, remoterepo):
"""
pulls bookmarks and branches information of the remote repo during a
pull or clone operation.
localrepo is our local repository
remoterepo is the peer instance
"""
remotepath = activepath(localrepo, remoterepo)
with remoterepo.commandexecutor() as e:
bookmarks = e.callcommand('listkeys', {
'namespace': 'bookmarks',
}).result()
# on a push, we don't want to keep obsolete heads since
# they won't show up as heads on the next pull, so we
# remove them here otherwise we would require the user
# to issue a pull to refresh the storage
bmap = {}
repo = localrepo.unfiltered()
with remoterepo.commandexecutor() as e:
branchmap = e.callcommand('branchmap', {}).result()
for branch, nodes in branchmap.iteritems():
bmap[branch] = []
for node in nodes:
if node in repo and not repo[node].obsolete():
bmap[branch].append(hex(node))
saveremotenames(localrepo, remotepath, bmap, bookmarks)