##// END OF EJS Templates
py3: add test demonstrating TypeError when phabsending skips unchanged commits...
py3: add test demonstrating TypeError when phabsending skips unchanged commits Skipping can currently only happen with `--no-amend`, so this isn't a usual configuration. Differential Revision: https://phab.mercurial-scm.org/D6868

File last commit:

r43207:69de49c4 default
r43219:3355e0c2 default
Show More
xxhash.c
882 lines | 28.4 KiB | text/x-c | CLexer
/*
* xxHash - Fast Hash algorithm
* Copyright (C) 2012-2016, Yann Collet
*
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at :
* - xxHash homepage: http://www.xxhash.com
* - xxHash source repository : https://github.com/Cyan4973/xxHash
*/
/* *************************************
* Tuning parameters
***************************************/
/*!XXH_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
* It can generate buggy code on targets which do not support unaligned memory accesses.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://stackoverflow.com/a/32095106/646947 for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define XXH_FORCE_MEMORY_ACCESS 2
# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
defined(__ICCARM__)
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
/*!XXH_ACCEPT_NULL_INPUT_POINTER :
* If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
* When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
* By default, this option is disabled. To enable it, uncomment below define :
*/
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
/*!XXH_FORCE_NATIVE_FORMAT :
* By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
* Results are therefore identical for little-endian and big-endian CPU.
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
* Should endian-independence be of no importance for your application, you may set the #define below to 1,
* to improve speed for Big-endian CPU.
* This option has no impact on Little_Endian CPU.
*/
#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
# define XXH_FORCE_NATIVE_FORMAT 0
#endif
/*!XXH_FORCE_ALIGN_CHECK :
* This is a minor performance trick, only useful with lots of very small keys.
* It means : check for aligned/unaligned input.
* The check costs one initial branch per hash; set to 0 when the input data
* is guaranteed to be aligned.
*/
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
# define XXH_FORCE_ALIGN_CHECK 0
# else
# define XXH_FORCE_ALIGN_CHECK 1
# endif
#endif
/* *************************************
* Includes & Memory related functions
***************************************/
/* Modify the local functions below should you wish to use some other memory routines */
/* for malloc(), free() */
#include <stdlib.h>
#include <stddef.h> /* size_t */
static void* XXH_malloc(size_t s) { return malloc(s); }
static void XXH_free (void* p) { free(p); }
/* for memcpy() */
#include <string.h>
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY
#endif
#include "xxhash.h"
/* *************************************
* Compiler Specific Options
***************************************/
#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# define INLINE_KEYWORD inline
#else
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
#else
# define FORCE_INLINE_ATTR
#endif
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
#ifdef _MSC_VER
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* *************************************
* Basic Types
***************************************/
#ifndef MEM_MODULE
# define MEM_MODULE
# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
# else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
# endif
#endif
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
#else
/* portable and safe solution. Generally efficient.
* see : http://stackoverflow.com/a/32095106/646947
*/
static U32 XXH_read32(const void* memPtr)
{
U32 val;
memcpy(&val, memPtr, sizeof(val));
return val;
}
static U64 XXH_read64(const void* memPtr)
{
U64 val;
memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
/* ****************************************
* Compiler-specific Functions and Macros
******************************************/
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
#if defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
#if defined(__ICCARM__)
# include <intrinsics.h>
# define XXH_rotl32(x,r) __ROR(x,(32 - r))
#else
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
#endif
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
#endif
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap32 _byteswap_ulong
# define XXH_swap64 _byteswap_uint64
#elif GCC_VERSION >= 403
# define XXH_swap32 __builtin_bswap32
# define XXH_swap64 __builtin_bswap64
#else
static U32 XXH_swap32 (U32 x)
{
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
static U64 XXH_swap64 (U64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
#endif
/* *************************************
* Architecture Macros
***************************************/
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
#ifndef XXH_CPU_LITTLE_ENDIAN
static const int g_one = 1;
# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
#endif
/* ***************************
* Memory reads
*****************************/
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
else
return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
}
FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
{
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
}
static U32 XXH_readBE32(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
}
FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
else
return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
}
FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
{
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
}
static U64 XXH_readBE64(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
}
/* *************************************
* Macros
***************************************/
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* *************************************
* Constants
***************************************/
static const U32 PRIME32_1 = 2654435761U;
static const U32 PRIME32_2 = 2246822519U;
static const U32 PRIME32_3 = 3266489917U;
static const U32 PRIME32_4 = 668265263U;
static const U32 PRIME32_5 = 374761393U;
static const U64 PRIME64_1 = 11400714785074694791ULL;
static const U64 PRIME64_2 = 14029467366897019727ULL;
static const U64 PRIME64_3 = 1609587929392839161ULL;
static const U64 PRIME64_4 = 9650029242287828579ULL;
static const U64 PRIME64_5 = 2870177450012600261ULL;
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
/* **************************
* Utils
****************************/
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
{
memcpy(dstState, srcState, sizeof(*dstState));
}
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
{
memcpy(dstState, srcState, sizeof(*dstState));
}
/* ***************************
* Simple Hash Functions
*****************************/
static U32 XXH32_round(U32 seed, U32 input)
{
seed += input * PRIME32_2;
seed = XXH_rotl32(seed, 13);
seed *= PRIME32_1;
return seed;
}
FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U32 h32;
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) {
len=0;
bEnd=p=(const BYTE*)(size_t)16;
}
#endif
if (len>=16) {
const BYTE* const limit = bEnd - 16;
U32 v1 = seed + PRIME32_1 + PRIME32_2;
U32 v2 = seed + PRIME32_2;
U32 v3 = seed + 0;
U32 v4 = seed - PRIME32_1;
do {
v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
} while (p<=limit);
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
} else {
h32 = seed + PRIME32_5;
}
h32 += (U32) len;
while (p+4<=bEnd) {
h32 += XXH_get32bits(p) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
p+=4;
}
while (p<bEnd) {
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
{
#if 0
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH32_CREATESTATE_STATIC(state);
XXH32_reset(state, seed);
XXH32_update(state, input, len);
return XXH32_digest(state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
} }
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
static U64 XXH64_round(U64 acc, U64 input)
{
acc += input * PRIME64_2;
acc = XXH_rotl64(acc, 31);
acc *= PRIME64_1;
return acc;
}
static U64 XXH64_mergeRound(U64 acc, U64 val)
{
val = XXH64_round(0, val);
acc ^= val;
acc = acc * PRIME64_1 + PRIME64_4;
return acc;
}
FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
U64 h64;
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) {
len=0;
bEnd=p=(const BYTE*)(size_t)32;
}
#endif
if (len>=32) {
const BYTE* const limit = bEnd - 32;
U64 v1 = seed + PRIME64_1 + PRIME64_2;
U64 v2 = seed + PRIME64_2;
U64 v3 = seed + 0;
U64 v4 = seed - PRIME64_1;
do {
v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
} while (p<=limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = seed + PRIME64_5;
}
h64 += (U64) len;
while (p+8<=bEnd) {
U64 const k1 = XXH64_round(0, XXH_get64bits(p));
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd) {
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd) {
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
{
#if 0
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH64_CREATESTATE_STATIC(state);
XXH64_reset(state, seed);
XXH64_update(state, input, len);
return XXH64_digest(state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
} }
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
/* **************************************************
* Advanced Hash Functions
****************************************************/
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
/*** Hash feed ***/
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
{
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
state.v1 = seed + PRIME32_1 + PRIME32_2;
state.v2 = seed + PRIME32_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME32_1;
memcpy(statePtr, &state, sizeof(state));
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
{
XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
state.v1 = seed + PRIME64_1 + PRIME64_2;
state.v2 = seed + PRIME64_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME64_1;
memcpy(statePtr, &state, sizeof(state));
return XXH_OK;
}
FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len_32 += (unsigned)len;
state->large_len |= (len>=16) | (state->total_len_32>=16);
if (state->memsize + len < 16) { /* fill in tmp buffer */
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
state->memsize += (unsigned)len;
return XXH_OK;
}
if (state->memsize) { /* some data left from previous update */
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
{ const U32* p32 = state->mem32;
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
}
p += 16-state->memsize;
state->memsize = 0;
}
if (p <= bEnd-16) {
const BYTE* const limit = bEnd - 16;
U32 v1 = state->v1;
U32 v2 = state->v2;
U32 v3 = state->v3;
U32 v4 = state->v4;
do {
v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd) {
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
{
const BYTE * p = (const BYTE*)state->mem32;
const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
U32 h32;
if (state->large_len) {
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
} else {
h32 = state->v3 /* == seed */ + PRIME32_5;
}
h32 += state->total_len_32;
while (p+4<=bEnd) {
h32 += XXH_readLE32(p, endian) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
p+=4;
}
while (p<bEnd) {
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_digest_endian(state_in, XXH_littleEndian);
else
return XXH32_digest_endian(state_in, XXH_bigEndian);
}
/* **** XXH64 **** */
FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len += len;
if (state->memsize + len < 32) { /* fill in tmp buffer */
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
state->memsize += (U32)len;
return XXH_OK;
}
if (state->memsize) { /* tmp buffer is full */
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
p += 32-state->memsize;
state->memsize = 0;
}
if (p+32 <= bEnd) {
const BYTE* const limit = bEnd - 32;
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;
do {
v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd) {
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
{
const BYTE * p = (const BYTE*)state->mem64;
const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
U64 h64;
if (state->total_len >= 32) {
U64 const v1 = state->v1;
U64 const v2 = state->v2;
U64 const v3 = state->v3;
U64 const v4 = state->v4;
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = state->v3 + PRIME64_5;
}
h64 += (U64) state->total_len;
while (p+8<=bEnd) {
U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd) {
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd) {
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_digest_endian(state_in, XXH_littleEndian);
else
return XXH64_digest_endian(state_in, XXH_bigEndian);
}
/* **************************
* Canonical representation
****************************/
/*! Default XXH result types are basic unsigned 32 and 64 bits.
* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
* These functions allow transformation of hash result into and from its canonical format.
* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
*/
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
memcpy(dst, &hash, sizeof(*dst));
}
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
memcpy(dst, &hash, sizeof(*dst));
}
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
return XXH_readBE32(src);
}
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
{
return XXH_readBE64(src);
}