##// END OF EJS Templates
debian: support building a single deb for multiple py3 versions...
debian: support building a single deb for multiple py3 versions Around transitions from one python minor version to another (such as 3.7 to 3.8), the current packaging can be slightly problematic - it produces a `control` file that requires that the version of `python3` that's installed be exactly the one that was used on the build machine for the `mercurial` package, by containing a line like: Depends: sensible-utils, libc6 (>= 2.14), python3 (<< 3.8), python3 (>= 3.7~), python3:any (>= 3.5~) This is because it "knows" we only built for v3.7, which is the current default on my system. By building the native components for multiple versions, we can make it produce a line like this, which is compatible with 3.7 AND 3.8: Depends: sensible-utils, libc6 (>= 2.14), python3 (<< 3.9), python3 (>= 3.7~), python3:any (>= 3.5~) This isn't *normally* required, so I'm not making it the default. For those that receive their python3 and mercurial packages from their distro, and/or don't have to worry about a situation where the team that manages the python3 installation isn't the same as the team that manages the mercurial installation, this is probably not necessary. I chose the names `DEB_HG_*` because `DEB_*` is passed through `debuild` automatically (otherwise we'd have to explicitly allow the options through, which is a nuisance), and the `HG` part is to make it clear that this isn't a "standard" debian option that other packages might respect. Test Plan: 1. "nothing changed": - built a deb without these changes - built a deb with these changes but everything at the default - used diffoscope to compare, all differences were due to timestamps 2. "explicit is the same as implicit" (single version) - built a deb with everything at the default - built a deb with DEB_HG_PYTHON_VERSIONS=3.7 - used diffoscope to compare, all differences were due to timestamps 3. "explicit is the same as implicit" (multi version) - built a deb with DEB_HG_MULTI_VERSION=1 - built a deb with DEB_HG_PYTHON_VERSIONS=3.7 - used diffoscope to compare, all differences were due to timestamps 4. (single version, 3.7) doesn't work with python3.8 - `/usr/bin/python3.7 /usr/bin/hg debuginstall` works - `/usr/bin/python3.8 /usr/bin/hg debuginstall` crashes 5. (multi version, 3.7 + 3.8) - `/usr/bin/python3.7 /usr/bin/hg debuginstall` works - `/usr/bin/python3.8 /usr/bin/hg debuginstall` works Differential Revision: https://phab.mercurial-scm.org/D8642

File last commit:

r44605:5e84a96d default
r45543:36178b5c default
Show More
make_cffi.py
228 lines | 6.9 KiB | text/x-python | PythonLexer
# Copyright (c) 2016-present, Gregory Szorc
# All rights reserved.
#
# This software may be modified and distributed under the terms
# of the BSD license. See the LICENSE file for details.
from __future__ import absolute_import
import cffi
import distutils.ccompiler
import os
import re
import subprocess
import tempfile
HERE = os.path.abspath(os.path.dirname(__file__))
SOURCES = [
"zstd/%s" % p
for p in (
"common/debug.c",
"common/entropy_common.c",
"common/error_private.c",
"common/fse_decompress.c",
"common/pool.c",
"common/threading.c",
"common/xxhash.c",
"common/zstd_common.c",
"compress/fse_compress.c",
"compress/hist.c",
"compress/huf_compress.c",
"compress/zstd_compress.c",
"compress/zstd_compress_literals.c",
"compress/zstd_compress_sequences.c",
"compress/zstd_double_fast.c",
"compress/zstd_fast.c",
"compress/zstd_lazy.c",
"compress/zstd_ldm.c",
"compress/zstd_opt.c",
"compress/zstdmt_compress.c",
"decompress/huf_decompress.c",
"decompress/zstd_ddict.c",
"decompress/zstd_decompress.c",
"decompress/zstd_decompress_block.c",
"dictBuilder/cover.c",
"dictBuilder/fastcover.c",
"dictBuilder/divsufsort.c",
"dictBuilder/zdict.c",
)
]
# Headers whose preprocessed output will be fed into cdef().
HEADERS = [
os.path.join(HERE, "zstd", *p)
for p in (("zstd.h",), ("dictBuilder", "zdict.h"),)
]
INCLUDE_DIRS = [
os.path.join(HERE, d)
for d in (
"zstd",
"zstd/common",
"zstd/compress",
"zstd/decompress",
"zstd/dictBuilder",
)
]
# cffi can't parse some of the primitives in zstd.h. So we invoke the
# preprocessor and feed its output into cffi.
compiler = distutils.ccompiler.new_compiler()
# Needed for MSVC.
if hasattr(compiler, "initialize"):
compiler.initialize()
# Distutils doesn't set compiler.preprocessor, so invoke the preprocessor
# manually.
if compiler.compiler_type == "unix":
args = list(compiler.executables["compiler"])
args.extend(
["-E", "-DZSTD_STATIC_LINKING_ONLY", "-DZDICT_STATIC_LINKING_ONLY",]
)
elif compiler.compiler_type == "msvc":
args = [compiler.cc]
args.extend(
["/EP", "/DZSTD_STATIC_LINKING_ONLY", "/DZDICT_STATIC_LINKING_ONLY",]
)
else:
raise Exception("unsupported compiler type: %s" % compiler.compiler_type)
def preprocess(path):
with open(path, "rb") as fh:
lines = []
it = iter(fh)
for l in it:
# zstd.h includes <stddef.h>, which is also included by cffi's
# boilerplate. This can lead to duplicate declarations. So we strip
# this include from the preprocessor invocation.
#
# The same things happens for including zstd.h, so give it the same
# treatment.
#
# We define ZSTD_STATIC_LINKING_ONLY, which is redundant with the inline
# #define in zstdmt_compress.h and results in a compiler warning. So drop
# the inline #define.
if l.startswith(
(
b"#include <stddef.h>",
b'#include "zstd.h"',
b"#define ZSTD_STATIC_LINKING_ONLY",
)
):
continue
# The preprocessor environment on Windows doesn't define include
# paths, so the #include of limits.h fails. We work around this
# by removing that import and defining INT_MAX ourselves. This is
# a bit hacky. But it gets the job done.
# TODO make limits.h work on Windows so we ensure INT_MAX is
# correct.
if l.startswith(b"#include <limits.h>"):
l = b"#define INT_MAX 2147483647\n"
# ZSTDLIB_API may not be defined if we dropped zstd.h. It isn't
# important so just filter it out.
if l.startswith(b"ZSTDLIB_API"):
l = l[len(b"ZSTDLIB_API ") :]
lines.append(l)
fd, input_file = tempfile.mkstemp(suffix=".h")
os.write(fd, b"".join(lines))
os.close(fd)
try:
env = dict(os.environ)
if getattr(compiler, "_paths", None):
env["PATH"] = compiler._paths
process = subprocess.Popen(
args + [input_file], stdout=subprocess.PIPE, env=env
)
output = process.communicate()[0]
ret = process.poll()
if ret:
raise Exception("preprocessor exited with error")
return output
finally:
os.unlink(input_file)
def normalize_output(output):
lines = []
for line in output.splitlines():
# CFFI's parser doesn't like __attribute__ on UNIX compilers.
if line.startswith(b'__attribute__ ((visibility ("default"))) '):
line = line[len(b'__attribute__ ((visibility ("default"))) ') :]
if line.startswith(b"__attribute__((deprecated("):
continue
elif b"__declspec(deprecated(" in line:
continue
lines.append(line)
return b"\n".join(lines)
ffi = cffi.FFI()
# zstd.h uses a possible undefined MIN(). Define it until
# https://github.com/facebook/zstd/issues/976 is fixed.
# *_DISABLE_DEPRECATE_WARNINGS prevents the compiler from emitting a warning
# when cffi uses the function. Since we statically link against zstd, even
# if we use the deprecated functions it shouldn't be a huge problem.
ffi.set_source(
"_zstd_cffi",
"""
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define ZSTD_STATIC_LINKING_ONLY
#include <zstd.h>
#define ZDICT_STATIC_LINKING_ONLY
#define ZDICT_DISABLE_DEPRECATE_WARNINGS
#include <zdict.h>
""",
sources=SOURCES,
include_dirs=INCLUDE_DIRS,
extra_compile_args=["-DZSTD_MULTITHREAD"],
)
DEFINE = re.compile(b"^\\#define ([a-zA-Z0-9_]+) ")
sources = []
# Feed normalized preprocessor output for headers into the cdef parser.
for header in HEADERS:
preprocessed = preprocess(header)
sources.append(normalize_output(preprocessed))
# #define's are effectively erased as part of going through preprocessor.
# So perform a manual pass to re-add those to the cdef source.
with open(header, "rb") as fh:
for line in fh:
line = line.strip()
m = DEFINE.match(line)
if not m:
continue
if m.group(1) == b"ZSTD_STATIC_LINKING_ONLY":
continue
# The parser doesn't like some constants with complex values.
if m.group(1) in (b"ZSTD_LIB_VERSION", b"ZSTD_VERSION_STRING"):
continue
# The ... is magic syntax by the cdef parser to resolve the
# value at compile time.
sources.append(m.group(0) + b" ...")
cdeflines = b"\n".join(sources).splitlines()
cdeflines = [l for l in cdeflines if l.strip()]
ffi.cdef(b"\n".join(cdeflines).decode("latin1"))
if __name__ == "__main__":
ffi.compile()