##// END OF EJS Templates
windows: insert file positioning call between reads and writes...
windows: insert file positioning call between reads and writes fopen() and fdopen() have a unique-to-Windows requirement that transitions between read and write operations in files opened in modes r+, w+, and a+ perform a file positioning call (fsetpos, fseek, or rewind) in between. While the MSDN docs don't say what will happen if this is not done, observations reveal that Python raises an IOError with errno 0. Furthermore, I /think/ this behavior isn't deterministic. But I can reproduce it reliably with subsequent patches applied that open revlogs in a+ mode and perform both reads and writes. This patch introduces a proxy class for file handles opened in r+, w+, and a+ mode on Windows. The class intercepts calls and audits whether a file positioning function has been called between read and write operations. If not, a dummy, no-op seek to the current file position is performed. This appears to be sufficient to "trick" Windows into allowing transitions between read and writes without raising errors.

File last commit:

r8390:beae42f3 default
r26375:3686fa2b default
Show More
lsprofcalltree.py
86 lines | 2.7 KiB | text/x-python | PythonLexer
"""
lsprofcalltree.py - lsprof output which is readable by kcachegrind
Authors:
* David Allouche <david <at> allouche.net>
* Jp Calderone & Itamar Shtull-Trauring
* Johan Dahlin
This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.
"""
def label(code):
if isinstance(code, str):
return '~' + code # built-in functions ('~' sorts at the end)
else:
return '%s %s:%d' % (code.co_name,
code.co_filename,
code.co_firstlineno)
class KCacheGrind(object):
def __init__(self, profiler):
self.data = profiler.getstats()
self.out_file = None
def output(self, out_file):
self.out_file = out_file
print >> out_file, 'events: Ticks'
self._print_summary()
for entry in self.data:
self._entry(entry)
def _print_summary(self):
max_cost = 0
for entry in self.data:
totaltime = int(entry.totaltime * 1000)
max_cost = max(max_cost, totaltime)
print >> self.out_file, 'summary: %d' % (max_cost,)
def _entry(self, entry):
out_file = self.out_file
code = entry.code
#print >> out_file, 'ob=%s' % (code.co_filename,)
if isinstance(code, str):
print >> out_file, 'fi=~'
else:
print >> out_file, 'fi=%s' % (code.co_filename,)
print >> out_file, 'fn=%s' % (label(code),)
inlinetime = int(entry.inlinetime * 1000)
if isinstance(code, str):
print >> out_file, '0 ', inlinetime
else:
print >> out_file, '%d %d' % (code.co_firstlineno, inlinetime)
# recursive calls are counted in entry.calls
if entry.calls:
calls = entry.calls
else:
calls = []
if isinstance(code, str):
lineno = 0
else:
lineno = code.co_firstlineno
for subentry in calls:
self._subentry(lineno, subentry)
print >> out_file
def _subentry(self, lineno, subentry):
out_file = self.out_file
code = subentry.code
#print >> out_file, 'cob=%s' % (code.co_filename,)
print >> out_file, 'cfn=%s' % (label(code),)
if isinstance(code, str):
print >> out_file, 'cfi=~'
print >> out_file, 'calls=%d 0' % (subentry.callcount,)
else:
print >> out_file, 'cfi=%s' % (code.co_filename,)
print >> out_file, 'calls=%d %d' % (
subentry.callcount, code.co_firstlineno)
totaltime = int(subentry.totaltime * 1000)
print >> out_file, '%d %d' % (lineno, totaltime)