##// END OF EJS Templates
repair: migrate revlogs during upgrade...
repair: migrate revlogs during upgrade Our next step for in-place upgrade is to migrate store data. Revlogs are the biggest source of data within the store and a store is useless without them, so we implement their migration first. Our strategy for migrating revlogs is to walk the store and call `revlog.clone()` on each revlog. There are some minor complications. Because revlogs have different storage options (e.g. changelog has generaldelta and delta chains disabled), we need to obtain the correct class of revlog so inserted data is encoded properly for its type. Various attempts at implementing progress indicators that didn't lead to frustration from false "it's almost done" indicators were made. I initially used a single progress bar based on number of revlogs. However, this quickly churned through all filelogs, got to 99% then effectively froze at 99.99% when it got to the manifest. So I converted the progress bar to total revision count. This was a little bit better. But the manifest was still significantly slower than filelogs and it took forever to process the last few percent. I then tried both revision/chunk bytes and raw bytes as the denominator. This had the opposite effect: because so much data is in manifests, it would churn through filelogs without showing much progress. When it got to manifests, it would fill in 90+% of the progress bar. I finally gave up having a unified progress bar and instead implemented 3 progress bars: 1 for filelog revisions, 1 for manifest revisions, and 1 for changelog revisions. I added extra messages indicating the total number of revisions of each so users know there are more progress bars coming. I also added extra messages before and after each stage to give extra details about what is happening. Strictly speaking, this isn't necessary. But the numbers are impressive. For example, when converting a non-generaldelta mozilla-central repository, the messages you see are: migrating 2475593 total revisions (1833043 in filelogs, 321156 in manifests, 321394 in changelog) migrating 1.67 GB in store; 2508 GB tracked data migrating 267868 filelogs containing 1833043 revisions (1.09 GB in store; 57.3 GB tracked data) finished migrating 1833043 filelog revisions across 267868 filelogs; change in size: -415776 bytes migrating 1 manifests containing 321156 revisions (518 MB in store; 2451 GB tracked data) That "2508 GB" figure really blew me away. I had no clue that the raw tracked data in mozilla-central was that large. Granted, 2451 GB is in the manifest and "only" 57.3 GB is in filelogs. But still. It's worth noting that gratuitous loading of source revlogs in order to display numbers and progress bars does serve a purpose: it ensures we can open all source revlogs. We don't want to spend several minutes copying revlogs only to encounter a permissions error or similar later. As part of this commit, we also add swapping of the store directory to the upgrade function. After revlogs are converted, we move the old store into the backup directory then move the temporary repo's store into the old store's location. On well-behaved systems, this should be 2 atomic operations and the window of inconsistency show be very narrow. There are still a few improvements to be made to store copying and upgrading. But this commit gets the bulk of the work out of the way.

File last commit:

r30389:e124e83f default
r30779:38aa1ca9 default
Show More
hbisect.py
318 lines | 11.0 KiB | text/x-python | PythonLexer
# changelog bisection for mercurial
#
# Copyright 2007 Matt Mackall
# Copyright 2005, 2006 Benoit Boissinot <benoit.boissinot@ens-lyon.org>
#
# Inspired by git bisect, extension skeleton taken from mq.py.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import collections
from .i18n import _
from .node import (
hex,
short,
)
from . import (
error,
)
def bisect(changelog, state):
"""find the next node (if any) for testing during a bisect search.
returns a (nodes, number, good) tuple.
'nodes' is the final result of the bisect if 'number' is 0.
Otherwise 'number' indicates the remaining possible candidates for
the search and 'nodes' contains the next bisect target.
'good' is True if bisect is searching for a first good changeset, False
if searching for a first bad one.
"""
clparents = changelog.parentrevs
skip = set([changelog.rev(n) for n in state['skip']])
def buildancestors(bad, good):
# only the earliest bad revision matters
badrev = min([changelog.rev(n) for n in bad])
goodrevs = [changelog.rev(n) for n in good]
goodrev = min(goodrevs)
# build visit array
ancestors = [None] * (len(changelog) + 1) # an extra for [-1]
# set nodes descended from goodrevs
for rev in goodrevs:
ancestors[rev] = []
for rev in changelog.revs(goodrev + 1):
for prev in clparents(rev):
if ancestors[prev] == []:
ancestors[rev] = []
# clear good revs from array
for rev in goodrevs:
ancestors[rev] = None
for rev in changelog.revs(len(changelog), goodrev):
if ancestors[rev] is None:
for prev in clparents(rev):
ancestors[prev] = None
if ancestors[badrev] is None:
return badrev, None
return badrev, ancestors
good = False
badrev, ancestors = buildancestors(state['bad'], state['good'])
if not ancestors: # looking for bad to good transition?
good = True
badrev, ancestors = buildancestors(state['good'], state['bad'])
bad = changelog.node(badrev)
if not ancestors: # now we're confused
if (len(state['bad']) == 1 and len(state['good']) == 1 and
state['bad'] != state['good']):
raise error.Abort(_("starting revisions are not directly related"))
raise error.Abort(_("inconsistent state, %s:%s is good and bad")
% (badrev, short(bad)))
# build children dict
children = {}
visit = collections.deque([badrev])
candidates = []
while visit:
rev = visit.popleft()
if ancestors[rev] == []:
candidates.append(rev)
for prev in clparents(rev):
if prev != -1:
if prev in children:
children[prev].append(rev)
else:
children[prev] = [rev]
visit.append(prev)
candidates.sort()
# have we narrowed it down to one entry?
# or have all other possible candidates besides 'bad' have been skipped?
tot = len(candidates)
unskipped = [c for c in candidates if (c not in skip) and (c != badrev)]
if tot == 1 or not unskipped:
return ([changelog.node(c) for c in candidates], 0, good)
perfect = tot // 2
# find the best node to test
best_rev = None
best_len = -1
poison = set()
for rev in candidates:
if rev in poison:
# poison children
poison.update(children.get(rev, []))
continue
a = ancestors[rev] or [rev]
ancestors[rev] = None
x = len(a) # number of ancestors
y = tot - x # number of non-ancestors
value = min(x, y) # how good is this test?
if value > best_len and rev not in skip:
best_len = value
best_rev = rev
if value == perfect: # found a perfect candidate? quit early
break
if y < perfect and rev not in skip: # all downhill from here?
# poison children
poison.update(children.get(rev, []))
continue
for c in children.get(rev, []):
if ancestors[c]:
ancestors[c] = list(set(ancestors[c] + a))
else:
ancestors[c] = a + [c]
assert best_rev is not None
best_node = changelog.node(best_rev)
return ([best_node], tot, good)
def extendrange(repo, state, nodes, good):
# bisect is incomplete when it ends on a merge node and
# one of the parent was not checked.
parents = repo[nodes[0]].parents()
if len(parents) > 1:
if good:
side = state['bad']
else:
side = state['good']
num = len(set(i.node() for i in parents) & set(side))
if num == 1:
return parents[0].ancestor(parents[1])
return None
def load_state(repo):
state = {'current': [], 'good': [], 'bad': [], 'skip': []}
for l in repo.vfs.tryreadlines("bisect.state"):
kind, node = l[:-1].split()
node = repo.lookup(node)
if kind not in state:
raise error.Abort(_("unknown bisect kind %s") % kind)
state[kind].append(node)
return state
def save_state(repo, state):
f = repo.vfs("bisect.state", "w", atomictemp=True)
with repo.wlock():
for kind in sorted(state):
for node in state[kind]:
f.write("%s %s\n" % (kind, hex(node)))
f.close()
def resetstate(repo):
"""remove any bisect state from the repository"""
if repo.vfs.exists("bisect.state"):
repo.vfs.unlink("bisect.state")
def checkstate(state):
"""check we have both 'good' and 'bad' to define a range
Raise Abort exception otherwise."""
if state['good'] and state['bad']:
return True
if not state['good']:
raise error.Abort(_('cannot bisect (no known good revisions)'))
else:
raise error.Abort(_('cannot bisect (no known bad revisions)'))
def get(repo, status):
"""
Return a list of revision(s) that match the given status:
- ``good``, ``bad``, ``skip``: csets explicitly marked as good/bad/skip
- ``goods``, ``bads`` : csets topologically good/bad
- ``range`` : csets taking part in the bisection
- ``pruned`` : csets that are goods, bads or skipped
- ``untested`` : csets whose fate is yet unknown
- ``ignored`` : csets ignored due to DAG topology
- ``current`` : the cset currently being bisected
"""
state = load_state(repo)
if status in ('good', 'bad', 'skip', 'current'):
return map(repo.changelog.rev, state[status])
else:
# In the following sets, we do *not* call 'bisect()' with more
# than one level of recursion, because that can be very, very
# time consuming. Instead, we always develop the expression as
# much as possible.
# 'range' is all csets that make the bisection:
# - have a good ancestor and a bad descendant, or conversely
# that's because the bisection can go either way
range = '( bisect(bad)::bisect(good) | bisect(good)::bisect(bad) )'
_t = repo.revs('bisect(good)::bisect(bad)')
# The sets of topologically good or bad csets
if len(_t) == 0:
# Goods are topologically after bads
goods = 'bisect(good)::' # Pruned good csets
bads = '::bisect(bad)' # Pruned bad csets
else:
# Goods are topologically before bads
goods = '::bisect(good)' # Pruned good csets
bads = 'bisect(bad)::' # Pruned bad csets
# 'pruned' is all csets whose fate is already known: good, bad, skip
skips = 'bisect(skip)' # Pruned skipped csets
pruned = '( (%s) | (%s) | (%s) )' % (goods, bads, skips)
# 'untested' is all cset that are- in 'range', but not in 'pruned'
untested = '( (%s) - (%s) )' % (range, pruned)
# 'ignored' is all csets that were not used during the bisection
# due to DAG topology, but may however have had an impact.
# E.g., a branch merged between bads and goods, but whose branch-
# point is out-side of the range.
iba = '::bisect(bad) - ::bisect(good)' # Ignored bads' ancestors
iga = '::bisect(good) - ::bisect(bad)' # Ignored goods' ancestors
ignored = '( ( (%s) | (%s) ) - (%s) )' % (iba, iga, range)
if status == 'range':
return repo.revs(range)
elif status == 'pruned':
return repo.revs(pruned)
elif status == 'untested':
return repo.revs(untested)
elif status == 'ignored':
return repo.revs(ignored)
elif status == "goods":
return repo.revs(goods)
elif status == "bads":
return repo.revs(bads)
else:
raise error.ParseError(_('invalid bisect state'))
def label(repo, node):
rev = repo.changelog.rev(node)
# Try explicit sets
if rev in get(repo, 'good'):
# i18n: bisect changeset status
return _('good')
if rev in get(repo, 'bad'):
# i18n: bisect changeset status
return _('bad')
if rev in get(repo, 'skip'):
# i18n: bisect changeset status
return _('skipped')
if rev in get(repo, 'untested') or rev in get(repo, 'current'):
# i18n: bisect changeset status
return _('untested')
if rev in get(repo, 'ignored'):
# i18n: bisect changeset status
return _('ignored')
# Try implicit sets
if rev in get(repo, 'goods'):
# i18n: bisect changeset status
return _('good (implicit)')
if rev in get(repo, 'bads'):
# i18n: bisect changeset status
return _('bad (implicit)')
return None
def shortlabel(label):
if label:
return label[0].upper()
return None
def printresult(ui, repo, state, displayer, nodes, good):
if len(nodes) == 1:
# narrowed it down to a single revision
if good:
ui.write(_("The first good revision is:\n"))
else:
ui.write(_("The first bad revision is:\n"))
displayer.show(repo[nodes[0]])
extendnode = extendrange(repo, state, nodes, good)
if extendnode is not None:
ui.write(_('Not all ancestors of this changeset have been'
' checked.\nUse bisect --extend to continue the '
'bisection from\nthe common ancestor, %s.\n')
% extendnode)
else:
# multiple possible revisions
if good:
ui.write(_("Due to skipped revisions, the first "
"good revision could be any of:\n"))
else:
ui.write(_("Due to skipped revisions, the first "
"bad revision could be any of:\n"))
for n in nodes:
displayer.show(repo[n])
displayer.close()