##// END OF EJS Templates
repair: migrate revlogs during upgrade...
repair: migrate revlogs during upgrade Our next step for in-place upgrade is to migrate store data. Revlogs are the biggest source of data within the store and a store is useless without them, so we implement their migration first. Our strategy for migrating revlogs is to walk the store and call `revlog.clone()` on each revlog. There are some minor complications. Because revlogs have different storage options (e.g. changelog has generaldelta and delta chains disabled), we need to obtain the correct class of revlog so inserted data is encoded properly for its type. Various attempts at implementing progress indicators that didn't lead to frustration from false "it's almost done" indicators were made. I initially used a single progress bar based on number of revlogs. However, this quickly churned through all filelogs, got to 99% then effectively froze at 99.99% when it got to the manifest. So I converted the progress bar to total revision count. This was a little bit better. But the manifest was still significantly slower than filelogs and it took forever to process the last few percent. I then tried both revision/chunk bytes and raw bytes as the denominator. This had the opposite effect: because so much data is in manifests, it would churn through filelogs without showing much progress. When it got to manifests, it would fill in 90+% of the progress bar. I finally gave up having a unified progress bar and instead implemented 3 progress bars: 1 for filelog revisions, 1 for manifest revisions, and 1 for changelog revisions. I added extra messages indicating the total number of revisions of each so users know there are more progress bars coming. I also added extra messages before and after each stage to give extra details about what is happening. Strictly speaking, this isn't necessary. But the numbers are impressive. For example, when converting a non-generaldelta mozilla-central repository, the messages you see are: migrating 2475593 total revisions (1833043 in filelogs, 321156 in manifests, 321394 in changelog) migrating 1.67 GB in store; 2508 GB tracked data migrating 267868 filelogs containing 1833043 revisions (1.09 GB in store; 57.3 GB tracked data) finished migrating 1833043 filelog revisions across 267868 filelogs; change in size: -415776 bytes migrating 1 manifests containing 321156 revisions (518 MB in store; 2451 GB tracked data) That "2508 GB" figure really blew me away. I had no clue that the raw tracked data in mozilla-central was that large. Granted, 2451 GB is in the manifest and "only" 57.3 GB is in filelogs. But still. It's worth noting that gratuitous loading of source revlogs in order to display numbers and progress bars does serve a purpose: it ensures we can open all source revlogs. We don't want to spend several minutes copying revlogs only to encounter a permissions error or similar later. As part of this commit, we also add swapping of the store directory to the upgrade function. After revlogs are converted, we move the old store into the backup directory then move the temporary repo's store into the old store's location. On well-behaved systems, this should be 2 atomic operations and the window of inconsistency show be very narrow. There are still a few improvements to be made to store copying and upgrading. But this commit gets the bulk of the work out of the way.

File last commit:

r30669:10b17ed9 default
r30779:38aa1ca9 default
Show More
i18n.py
109 lines | 3.6 KiB | text/x-python | PythonLexer
# i18n.py - internationalization support for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import gettext as gettextmod
import locale
import os
import sys
from . import (
encoding,
pycompat,
)
# modelled after templater.templatepath:
if getattr(sys, 'frozen', None) is not None:
module = pycompat.sysexecutable
else:
module = __file__
try:
unicode
except NameError:
unicode = str
_languages = None
if (pycompat.osname == 'nt'
and 'LANGUAGE' not in encoding.environ
and 'LC_ALL' not in encoding.environ
and 'LC_MESSAGES' not in encoding.environ
and 'LANG' not in encoding.environ):
# Try to detect UI language by "User Interface Language Management" API
# if no locale variables are set. Note that locale.getdefaultlocale()
# uses GetLocaleInfo(), which may be different from UI language.
# (See http://msdn.microsoft.com/en-us/library/dd374098(v=VS.85).aspx )
try:
import ctypes
langid = ctypes.windll.kernel32.GetUserDefaultUILanguage()
_languages = [locale.windows_locale[langid]]
except (ImportError, AttributeError, KeyError):
# ctypes not found or unknown langid
pass
_ugettext = None
def setdatapath(datapath):
datapath = pycompat.fsdecode(datapath)
localedir = os.path.join(datapath, pycompat.sysstr('locale'))
t = gettextmod.translation('hg', localedir, _languages, fallback=True)
global _ugettext
try:
_ugettext = t.ugettext
except AttributeError:
_ugettext = t.gettext
_msgcache = {}
def gettext(message):
"""Translate message.
The message is looked up in the catalog to get a Unicode string,
which is encoded in the local encoding before being returned.
Important: message is restricted to characters in the encoding
given by sys.getdefaultencoding() which is most likely 'ascii'.
"""
# If message is None, t.ugettext will return u'None' as the
# translation whereas our callers expect us to return None.
if message is None or not _ugettext:
return message
if message not in _msgcache:
if type(message) is unicode:
# goofy unicode docstrings in test
paragraphs = message.split(u'\n\n')
else:
paragraphs = [p.decode("ascii") for p in message.split('\n\n')]
# Be careful not to translate the empty string -- it holds the
# meta data of the .po file.
u = u'\n\n'.join([p and _ugettext(p) or u'' for p in paragraphs])
try:
# encoding.tolocal cannot be used since it will first try to
# decode the Unicode string. Calling u.decode(enc) really
# means u.encode(sys.getdefaultencoding()).decode(enc). Since
# the Python encoding defaults to 'ascii', this fails if the
# translated string use non-ASCII characters.
encodingstr = pycompat.sysstr(encoding.encoding)
_msgcache[message] = u.encode(encodingstr, "replace")
except LookupError:
# An unknown encoding results in a LookupError.
_msgcache[message] = message
return _msgcache[message]
def _plain():
if ('HGPLAIN' not in encoding.environ
and 'HGPLAINEXCEPT' not in encoding.environ):
return False
exceptions = encoding.environ.get('HGPLAINEXCEPT', '').strip().split(',')
return 'i18n' not in exceptions
if _plain():
_ = lambda message: message
else:
_ = gettext