##// END OF EJS Templates
narrow: include working copy narrowspec in transaction journal...
narrow: include working copy narrowspec in transaction journal Now that we have separate narrowspecs for the store and the working copy, we need to include both in the transaction journal. Differential Revision: https://phab.mercurial-scm.org/D5505

File last commit:

r41226:c3e5ce3a default
r41264:3b35ebdb default
Show More
perf-revlog-write-plot.py
127 lines | 3.5 KiB | text/x-python | PythonLexer
/ contrib / perf-utils / perf-revlog-write-plot.py
#!/usr/bin/env python
#
# Copyright 2018 Paul Morelle <Paul.Morelle@octobus.net>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
#
# This script use the output of `hg perfrevlogwrite -T json --details` to draw
# various plot related to write performance in a revlog
#
# usage: perf-revlog-write-plot.py details.json
from __future__ import absolute_import, print_function
import json
import re
import numpy as np
import scipy.signal
from matplotlib import (
pyplot as plt,
ticker as mticker,
)
def plot(data, title=None):
items = {}
re_title = re.compile(r'^revisions #\d+ of \d+, rev (\d+)$')
for item in data:
m = re_title.match(item['title'])
if m is None:
continue
rev = int(m.group(1))
items[rev] = item
min_rev = min(items.keys())
max_rev = max(items.keys())
ary = np.empty((2, max_rev - min_rev + 1))
for rev, item in items.items():
ary[0][rev - min_rev] = rev
ary[1][rev - min_rev] = item['wall']
fig = plt.figure()
comb_plt = fig.add_subplot(211)
other_plt = fig.add_subplot(212)
comb_plt.plot(ary[0],
np.cumsum(ary[1]),
color='red',
linewidth=1,
label='comb')
plots = []
p = other_plt.plot(ary[0],
ary[1],
color='red',
linewidth=1,
label='wall')
plots.append(p)
colors = {
10: ('green', 'xkcd:grass green'),
100: ('blue', 'xkcd:bright blue'),
1000: ('purple', 'xkcd:dark pink'),
}
for n, color in colors.items():
avg_n = np.convolve(ary[1], np.full(n, 1. / n), 'valid')
p = other_plt.plot(ary[0][n - 1:],
avg_n,
color=color[0],
linewidth=1,
label='avg time last %d' % n)
plots.append(p)
med_n = scipy.signal.medfilt(ary[1], n + 1)
p = other_plt.plot(ary[0],
med_n,
color=color[1],
linewidth=1,
label='median time last %d' % n)
plots.append(p)
formatter = mticker.ScalarFormatter()
formatter.set_scientific(False)
formatter.set_useOffset(False)
comb_plt.grid()
comb_plt.xaxis.set_major_formatter(formatter)
comb_plt.legend()
other_plt.grid()
other_plt.xaxis.set_major_formatter(formatter)
leg = other_plt.legend()
leg2plot = {}
for legline, plot in zip(leg.get_lines(), plots):
legline.set_picker(5)
leg2plot[legline] = plot
def onpick(event):
legline = event.artist
plot = leg2plot[legline]
visible = not plot[0].get_visible()
for l in plot:
l.set_visible(visible)
if visible:
legline.set_alpha(1.0)
else:
legline.set_alpha(0.2)
fig.canvas.draw()
if title is not None:
fig.canvas.set_window_title(title)
fig.canvas.mpl_connect('pick_event', onpick)
plt.show()
if __name__ == '__main__':
import sys
if len(sys.argv) > 1:
print('reading from %r' % sys.argv[1])
with open(sys.argv[1], 'r') as fp:
plot(json.load(fp), title=sys.argv[1])
else:
print('reading from stdin')
plot(json.load(sys.stdin))