##// END OF EJS Templates
posix: do not use fstat in isowner...
posix: do not use fstat in isowner The fstat function was undefined, but never used since a stat object was always passed in the optional st argument. Passing st is now mandatory. This bug crept in when util was split up into posix and windows modules. The fstat function is still defined in util, but importing it into posix would create an import cycle which seems unnecessary.

File last commit:

r8465:23429ebd default
r8657:3fa92c61 default
Show More
ancestor.py
85 lines | 2.3 KiB | text/x-python | PythonLexer
# ancestor.py - generic DAG ancestor algorithm for mercurial
#
# Copyright 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2, incorporated herein by reference.
import heapq
def ancestor(a, b, pfunc):
"""
return the least common ancestor of nodes a and b or None if there
is no such ancestor.
pfunc must return a list of parent vertices
"""
if a == b:
return a
# find depth from root of all ancestors
parentcache = {}
visit = [a, b]
depth = {}
while visit:
vertex = visit[-1]
pl = pfunc(vertex)
parentcache[vertex] = pl
if not pl:
depth[vertex] = 0
visit.pop()
else:
for p in pl:
if p == a or p == b: # did we find a or b as a parent?
return p # we're done
if p not in depth:
visit.append(p)
if visit[-1] == vertex:
depth[vertex] = min([depth[p] for p in pl]) - 1
visit.pop()
# traverse ancestors in order of decreasing distance from root
def ancestors(vertex):
h = [(depth[vertex], vertex)]
seen = set()
while h:
d, n = heapq.heappop(h)
if n not in seen:
seen.add(n)
yield (d, n)
for p in parentcache[n]:
heapq.heappush(h, (depth[p], p))
def generations(vertex):
sg, s = None, set()
for g, v in ancestors(vertex):
if g != sg:
if sg:
yield sg, s
sg, s = g, set((v,))
else:
s.add(v)
yield sg, s
x = generations(a)
y = generations(b)
gx = x.next()
gy = y.next()
# increment each ancestor list until it is closer to root than
# the other, or they match
try:
while 1:
if gx[0] == gy[0]:
for v in gx[1]:
if v in gy[1]:
return v
gy = y.next()
gx = x.next()
elif gx[0] > gy[0]:
gy = y.next()
else:
gx = x.next()
except StopIteration:
return None