##// END OF EJS Templates
narrow: add option for automatically removing unused includes...
narrow: add option for automatically removing unused includes It's been a somewhat common request among our users to have Mercurial automatically pick includes to remove. This patch adds an option for that: `hg tracked --auto-remove-includes`. I'm not sure if this is the right name and semantics for it. Perhaps the feature should also add excludes of large subdirectories even if other files in the include are needed? Narrow clones are experimental, so we can change the name and/or semantics later if necessary. Differential Revision: https://phab.mercurial-scm.org/D6848

File last commit:

r42237:675775c3 default
r43215:40f78072 default
Show More
test_data_structures_fuzzing.py
76 lines | 3.5 KiB | text/x-python | PythonLexer
/ contrib / python-zstandard / tests / test_data_structures_fuzzing.py
import io
import os
import sys
import unittest
try:
import hypothesis
import hypothesis.strategies as strategies
except ImportError:
raise unittest.SkipTest('hypothesis not available')
import zstandard as zstd
from .common import (
make_cffi,
)
s_windowlog = strategies.integers(min_value=zstd.WINDOWLOG_MIN,
max_value=zstd.WINDOWLOG_MAX)
s_chainlog = strategies.integers(min_value=zstd.CHAINLOG_MIN,
max_value=zstd.CHAINLOG_MAX)
s_hashlog = strategies.integers(min_value=zstd.HASHLOG_MIN,
max_value=zstd.HASHLOG_MAX)
s_searchlog = strategies.integers(min_value=zstd.SEARCHLOG_MIN,
max_value=zstd.SEARCHLOG_MAX)
s_minmatch = strategies.integers(min_value=zstd.MINMATCH_MIN,
max_value=zstd.MINMATCH_MAX)
s_targetlength = strategies.integers(min_value=zstd.TARGETLENGTH_MIN,
max_value=zstd.TARGETLENGTH_MAX)
s_strategy = strategies.sampled_from((zstd.STRATEGY_FAST,
zstd.STRATEGY_DFAST,
zstd.STRATEGY_GREEDY,
zstd.STRATEGY_LAZY,
zstd.STRATEGY_LAZY2,
zstd.STRATEGY_BTLAZY2,
zstd.STRATEGY_BTOPT,
zstd.STRATEGY_BTULTRA,
zstd.STRATEGY_BTULTRA2))
@make_cffi
@unittest.skipUnless('ZSTD_SLOW_TESTS' in os.environ, 'ZSTD_SLOW_TESTS not set')
class TestCompressionParametersHypothesis(unittest.TestCase):
@hypothesis.given(s_windowlog, s_chainlog, s_hashlog, s_searchlog,
s_minmatch, s_targetlength, s_strategy)
def test_valid_init(self, windowlog, chainlog, hashlog, searchlog,
minmatch, targetlength, strategy):
zstd.ZstdCompressionParameters(window_log=windowlog,
chain_log=chainlog,
hash_log=hashlog,
search_log=searchlog,
min_match=minmatch,
target_length=targetlength,
strategy=strategy)
@hypothesis.given(s_windowlog, s_chainlog, s_hashlog, s_searchlog,
s_minmatch, s_targetlength, s_strategy)
def test_estimated_compression_context_size(self, windowlog, chainlog,
hashlog, searchlog,
minmatch, targetlength,
strategy):
if minmatch == zstd.MINMATCH_MIN and strategy in (zstd.STRATEGY_FAST, zstd.STRATEGY_GREEDY):
minmatch += 1
elif minmatch == zstd.MINMATCH_MAX and strategy != zstd.STRATEGY_FAST:
minmatch -= 1
p = zstd.ZstdCompressionParameters(window_log=windowlog,
chain_log=chainlog,
hash_log=hashlog,
search_log=searchlog,
min_match=minmatch,
target_length=targetlength,
strategy=strategy)
size = p.estimated_compression_context_size()