##// END OF EJS Templates
patchbomb: fix parsing of multiple addresses, allow multiple addrs in --to/cc/bcc...
patchbomb: fix parsing of multiple addresses, allow multiple addrs in --to/cc/bcc Instead of using custom code to split apart addresses, we now use mail.parseaddrlist() which always does the Right Thing as it relies on Python's email.Utils.getaddresses(). Previously, 'hg email --to=foo,bar' only respected foo and discarded bar. Also, commas in names were not allowed in hgrc or the interactive prompt; specifying '"Lastname, Firstname" <foo>' would confuse patchbomb. The testcase uses '-m tmp.mbox' because -n (like in other tests) would disable address mangling.

File last commit:

r9915:806e6b6c default
r9947:4600e622 default
Show More
ancestor.py
86 lines | 2.4 KiB | text/x-python | PythonLexer
# ancestor.py - generic DAG ancestor algorithm for mercurial
#
# Copyright 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2, incorporated herein by reference.
import heapq
def ancestor(a, b, pfunc):
"""
return a minimal-distance ancestor of nodes a and b, or None if there is no
such ancestor. Note that there can be several ancestors with the same
(minimal) distance, and the one returned is arbitrary.
pfunc must return a list of parent vertices for a given vertex
"""
if a == b:
return a
# find depth from root of all ancestors
parentcache = {}
visit = [a, b]
depth = {}
while visit:
vertex = visit[-1]
pl = pfunc(vertex)
parentcache[vertex] = pl
if not pl:
depth[vertex] = 0
visit.pop()
else:
for p in pl:
if p == a or p == b: # did we find a or b as a parent?
return p # we're done
if p not in depth:
visit.append(p)
if visit[-1] == vertex:
depth[vertex] = min([depth[p] for p in pl]) - 1
visit.pop()
# traverse ancestors in order of decreasing distance from root
def ancestors(vertex):
h = [(depth[vertex], vertex)]
seen = set()
while h:
d, n = heapq.heappop(h)
if n not in seen:
seen.add(n)
yield (d, n)
for p in parentcache[n]:
heapq.heappush(h, (depth[p], p))
def generations(vertex):
sg, s = None, set()
for g, v in ancestors(vertex):
if g != sg:
if sg:
yield sg, s
sg, s = g, set((v,))
else:
s.add(v)
yield sg, s
x = generations(a)
y = generations(b)
gx = x.next()
gy = y.next()
# increment each ancestor list until it is closer to root than
# the other, or they match
try:
while 1:
if gx[0] == gy[0]:
for v in gx[1]:
if v in gy[1]:
return v
gy = y.next()
gx = x.next()
elif gx[0] > gy[0]:
gy = y.next()
else:
gx = x.next()
except StopIteration:
return None