##// END OF EJS Templates
setdiscovery: improves logged message...
setdiscovery: improves logged message The 'srvheads' list contains all server heads including the common ones. We adjust 'ui.log' message to provide more useful information about server heads locally unknown. The performance impact of turning the list to set is negligible (about 1e-4s) compared to the rest of the discovery cost, so I'm taking the easy path.

File last commit:

r32417:f40dc6f7 default
r32768:483d4775 default
Show More
profiling.py
210 lines | 6.3 KiB | text/x-python | PythonLexer
# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import, print_function
import contextlib
from .i18n import _
from . import (
encoding,
error,
extensions,
util,
)
def _loadprofiler(ui, profiler):
"""load profiler extension. return profile method, or None on failure"""
extname = profiler
extensions.loadall(ui, whitelist=[extname])
try:
mod = extensions.find(extname)
except KeyError:
return None
else:
return getattr(mod, 'profile', None)
@contextlib.contextmanager
def lsprofile(ui, fp):
format = ui.config('profiling', 'format', default='text')
field = ui.config('profiling', 'sort', default='inlinetime')
limit = ui.configint('profiling', 'limit', default=30)
climit = ui.configint('profiling', 'nested', default=0)
if format not in ['text', 'kcachegrind']:
ui.warn(_("unrecognized profiling format '%s'"
" - Ignored\n") % format)
format = 'text'
try:
from . import lsprof
except ImportError:
raise error.Abort(_(
'lsprof not available - install from '
'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
p = lsprof.Profiler()
p.enable(subcalls=True)
try:
yield
finally:
p.disable()
if format == 'kcachegrind':
from . import lsprofcalltree
calltree = lsprofcalltree.KCacheGrind(p)
calltree.output(fp)
else:
# format == 'text'
stats = lsprof.Stats(p.getstats())
stats.sort(field)
stats.pprint(limit=limit, file=fp, climit=climit)
@contextlib.contextmanager
def flameprofile(ui, fp):
try:
from flamegraph import flamegraph
except ImportError:
raise error.Abort(_(
'flamegraph not available - install from '
'https://github.com/evanhempel/python-flamegraph'))
# developer config: profiling.freq
freq = ui.configint('profiling', 'freq', default=1000)
filter_ = None
collapse_recursion = True
thread = flamegraph.ProfileThread(fp, 1.0 / freq,
filter_, collapse_recursion)
start_time = util.timer()
try:
thread.start()
yield
finally:
thread.stop()
thread.join()
print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
util.timer() - start_time, thread.num_frames(),
thread.num_frames(unique=True)))
@contextlib.contextmanager
def statprofile(ui, fp):
from . import statprof
freq = ui.configint('profiling', 'freq', default=1000)
if freq > 0:
# Cannot reset when profiler is already active. So silently no-op.
if statprof.state.profile_level == 0:
statprof.reset(freq)
else:
ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)
statprof.start(mechanism='thread')
try:
yield
finally:
data = statprof.stop()
profformat = ui.config('profiling', 'statformat', 'hotpath')
formats = {
'byline': statprof.DisplayFormats.ByLine,
'bymethod': statprof.DisplayFormats.ByMethod,
'hotpath': statprof.DisplayFormats.Hotpath,
'json': statprof.DisplayFormats.Json,
'chrome': statprof.DisplayFormats.Chrome,
}
if profformat in formats:
displayformat = formats[profformat]
else:
ui.warn(_('unknown profiler output format: %s\n') % profformat)
displayformat = statprof.DisplayFormats.Hotpath
kwargs = {}
def fraction(s):
if s.endswith('%'):
v = float(s[:-1]) / 100
else:
v = float(s)
if 0 <= v <= 1:
return v
raise ValueError(s)
if profformat == 'chrome':
showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
showmax = ui.configwith(fraction, 'profiling', 'showmax', 0.999)
kwargs.update(minthreshold=showmin, maxthreshold=showmax)
statprof.display(fp, data=data, format=displayformat, **kwargs)
@contextlib.contextmanager
def profile(ui):
"""Start profiling.
Profiling is active when the context manager is active. When the context
manager exits, profiling results will be written to the configured output.
"""
profiler = encoding.environ.get('HGPROF')
proffn = None
if profiler is None:
profiler = ui.config('profiling', 'type', default='stat')
if profiler not in ('ls', 'stat', 'flame'):
# try load profiler from extension with the same name
proffn = _loadprofiler(ui, profiler)
if proffn is None:
ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler)
profiler = 'stat'
output = ui.config('profiling', 'output')
if output == 'blackbox':
fp = util.stringio()
elif output:
path = ui.expandpath(output)
fp = open(path, 'wb')
else:
fp = ui.ferr
try:
if proffn is not None:
pass
elif profiler == 'ls':
proffn = lsprofile
elif profiler == 'flame':
proffn = flameprofile
else:
proffn = statprofile
with proffn(ui, fp):
yield
finally:
if output:
if output == 'blackbox':
val = 'Profile:\n%s' % fp.getvalue()
# ui.log treats the input as a format string,
# so we need to escape any % signs.
val = val.replace('%', '%%')
ui.log('profile', val)
fp.close()
@contextlib.contextmanager
def maybeprofile(ui):
"""Profile if enabled, else do nothing.
This context manager can be used to optionally profile if profiling
is enabled. Otherwise, it does nothing.
The purpose of this context manager is to make calling code simpler:
just use a single code path for calling into code you may want to profile
and this function determines whether to start profiling.
"""
if ui.configbool('profiling', 'enabled'):
with profile(ui):
yield
else:
yield