##// END OF EJS Templates
sshpeer: initial definition and implementation of new SSH protocol...
sshpeer: initial definition and implementation of new SSH protocol The existing SSH protocol has several design flaws. Future commits will elaborate on these flaws as new features are introduced to combat these flaws. For now, hopefully you can take me for my word that a ground up rewrite of the SSH protocol is needed. This commit lays the foundation for a new SSH protocol by defining a mechanism to upgrade the SSH transport channel away from the default (version 1) protocol to something modern (which we'll call "version 2" for now). This upgrade process is detailed in the internals documentation for the wire protocol. The gist of it is the client sends a request line preceding the "hello" command/line which basically says "I'm requesting an upgrade: here's what I support." If the server recognizes that line, it processes the upgrade request and the transport channel is switched to use the new version of the protocol. If not, it sends an empty response, which is how all Mercurial SSH servers from the beginning of time reacted to unknown commands. The upgrade request is effectively ignored and the client continues to use the existing version of the protocol as if nothing happened. The new version of the SSH protocol is completely identical to version 1 aside from the upgrade dance and the bytes that follow. The immediate bytes that follow the protocol switch are defined to be a length framed "capabilities: " line containing the remote's advertised capabilities. In reality, this looks very similar to what the "hello" response would look like. But it will evolve quickly. The methodology by which the protocol will evolve is important. I'm not going to introduce the new protocol all at once. That would likely lead to endless bike shedding and forward progress would stall. Instead, I intend to tricle out new features and diversions from the existing protocol in small, incremental changes. To support the gradual evolution of the protocol, the on-the-wire advertised protocol name contains an "exp" to denote "experimental" and a 4 digit field to capture the sub-version of the protocol. Whenever we make a BC change to the wire protocol, we can increment this version and lock out all older clients because it will appear as a completely different protocol version. This means we can incur as many breaking changes as we want. We don't have to commit to supporting any one feature or idea for a long period of time. We can even evolve the handshake mechanism, because that is defined as being an implementation detail of the negotiated protocol version! Hopefully this lowers the barrier to accepting changes to the protocol and for experimenting with "radical" ideas during its development. In core, sshpeer received most of the attention. We haven't even implemented the server bits for the new protocol in core yet. Instead, we add very primitive support to our test server, mainly just to exercise the added code paths in sshpeer. Differential Revision: https://phab.mercurial-scm.org/D2061 # no-check-commit because of required foo_bar naming

File last commit:

r35741:50868145 default
r35994:48a3a928 default
Show More
bdiff.c
320 lines | 6.9 KiB | text/x-c | CLexer
/*
bdiff.c - efficient binary diff extension for Mercurial
Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
This software may be used and distributed according to the terms of
the GNU General Public License, incorporated herein by reference.
Based roughly on Python difflib
*/
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "bdiff.h"
#include "bitmanipulation.h"
#include "compat.h"
/* Hash implementation from diffutils */
#define ROL(v, n) ((v) << (n) | (v) >> (sizeof(v) * CHAR_BIT - (n)))
#define HASH(h, c) ((c) + ROL(h, 7))
struct pos {
int pos, len;
};
int bdiff_splitlines(const char *a, ssize_t len, struct bdiff_line **lr)
{
unsigned hash;
int i;
const char *p, *b = a;
const char *const plast = a + len - 1;
struct bdiff_line *l;
/* count the lines */
i = 1; /* extra line for sentinel */
for (p = a; p < plast; p++)
if (*p == '\n')
i++;
if (p == plast)
i++;
*lr = l = (struct bdiff_line *)calloc(i, sizeof(struct bdiff_line));
if (!l)
return -1;
/* build the line array and calculate hashes */
hash = 0;
for (p = a; p < plast; p++) {
hash = HASH(hash, *p);
if (*p == '\n') {
l->hash = hash;
hash = 0;
l->len = p - b + 1;
l->l = b;
l->n = INT_MAX;
l++;
b = p + 1;
}
}
if (p == plast) {
hash = HASH(hash, *p);
l->hash = hash;
l->len = p - b + 1;
l->l = b;
l->n = INT_MAX;
l++;
}
/* set up a sentinel */
l->hash = 0;
l->len = 0;
l->l = a + len;
return i - 1;
}
static inline int cmp(struct bdiff_line *a, struct bdiff_line *b)
{
return a->hash != b->hash || a->len != b->len ||
memcmp(a->l, b->l, a->len);
}
static int equatelines(struct bdiff_line *a, int an, struct bdiff_line *b,
int bn)
{
int i, j, buckets = 1, t, scale;
struct pos *h = NULL;
/* build a hash table of the next highest power of 2 */
while (buckets < bn + 1)
buckets *= 2;
/* try to allocate a large hash table to avoid collisions */
for (scale = 4; scale; scale /= 2) {
h = (struct pos *)calloc(buckets, scale * sizeof(struct pos));
if (h)
break;
}
if (!h)
return 0;
buckets = buckets * scale - 1;
/* clear the hash table */
for (i = 0; i <= buckets; i++) {
h[i].pos = -1;
h[i].len = 0;
}
/* add lines to the hash table chains */
for (i = 0; i < bn; i++) {
/* find the equivalence class */
for (j = b[i].hash & buckets; h[j].pos != -1;
j = (j + 1) & buckets)
if (!cmp(b + i, b + h[j].pos))
break;
/* add to the head of the equivalence class */
b[i].n = h[j].pos;
b[i].e = j;
h[j].pos = i;
h[j].len++; /* keep track of popularity */
}
/* compute popularity threshold */
t = (bn >= 31000) ? bn / 1000 : 1000000 / (bn + 1);
/* match items in a to their equivalence class in b */
for (i = 0; i < an; i++) {
/* find the equivalence class */
for (j = a[i].hash & buckets; h[j].pos != -1;
j = (j + 1) & buckets)
if (!cmp(a + i, b + h[j].pos))
break;
a[i].e = j; /* use equivalence class for quick compare */
if (h[j].len <= t)
a[i].n = h[j].pos; /* point to head of match list */
else
a[i].n = -1; /* too popular */
}
/* discard hash tables */
free(h);
return 1;
}
static int longest_match(struct bdiff_line *a, struct bdiff_line *b,
struct pos *pos, int a1, int a2, int b1, int b2,
int *omi, int *omj)
{
int mi = a1, mj = b1, mk = 0, i, j, k, half, bhalf;
/* window our search on large regions to better bound
worst-case performance. by choosing a window at the end, we
reduce skipping overhead on the b chains. */
if (a2 - a1 > 30000)
a1 = a2 - 30000;
half = (a1 + a2 - 1) / 2;
bhalf = (b1 + b2 - 1) / 2;
for (i = a1; i < a2; i++) {
/* skip all lines in b after the current block */
for (j = a[i].n; j >= b2; j = b[j].n)
;
/* loop through all lines match a[i] in b */
for (; j >= b1; j = b[j].n) {
/* does this extend an earlier match? */
for (k = 1; j - k >= b1 && i - k >= a1; k++) {
/* reached an earlier match? */
if (pos[j - k].pos == i - k) {
k += pos[j - k].len;
break;
}
/* previous line mismatch? */
if (a[i - k].e != b[j - k].e)
break;
}
pos[j].pos = i;
pos[j].len = k;
/* best match so far? we prefer matches closer
to the middle to balance recursion */
if (k > mk) {
/* a longer match */
mi = i;
mj = j;
mk = k;
} else if (k == mk) {
if (i > mi && i <= half && j > b1) {
/* same match but closer to half */
mi = i;
mj = j;
} else if (i == mi && (mj > bhalf || i == a1)) {
/* same i but best earlier j */
mj = j;
}
}
}
}
if (mk) {
mi = mi - mk + 1;
mj = mj - mk + 1;
}
/* expand match to include subsequent popular lines */
while (mi + mk < a2 && mj + mk < b2 && a[mi + mk].e == b[mj + mk].e)
mk++;
*omi = mi;
*omj = mj;
return mk;
}
static struct bdiff_hunk *recurse(struct bdiff_line *a, struct bdiff_line *b,
struct pos *pos, int a1, int a2, int b1,
int b2, struct bdiff_hunk *l)
{
int i, j, k;
while (1) {
/* find the longest match in this chunk */
k = longest_match(a, b, pos, a1, a2, b1, b2, &i, &j);
if (!k)
return l;
/* and recurse on the remaining chunks on either side */
l = recurse(a, b, pos, a1, i, b1, j, l);
if (!l)
return NULL;
l->next =
(struct bdiff_hunk *)malloc(sizeof(struct bdiff_hunk));
if (!l->next)
return NULL;
l = l->next;
l->a1 = i;
l->a2 = i + k;
l->b1 = j;
l->b2 = j + k;
l->next = NULL;
/* tail-recursion didn't happen, so do equivalent iteration */
a1 = i + k;
b1 = j + k;
}
}
int bdiff_diff(struct bdiff_line *a, int an, struct bdiff_line *b, int bn,
struct bdiff_hunk *base)
{
struct bdiff_hunk *curr;
struct pos *pos;
int t, count = 0;
/* allocate and fill arrays */
t = equatelines(a, an, b, bn);
pos = (struct pos *)calloc(bn ? bn : 1, sizeof(struct pos));
if (pos && t) {
/* generate the matching block list */
curr = recurse(a, b, pos, 0, an, 0, bn, base);
if (!curr)
return -1;
/* sentinel end hunk */
curr->next =
(struct bdiff_hunk *)malloc(sizeof(struct bdiff_hunk));
if (!curr->next)
return -1;
curr = curr->next;
curr->a1 = curr->a2 = an;
curr->b1 = curr->b2 = bn;
curr->next = NULL;
}
free(pos);
/* normalize the hunk list, try to push each hunk towards the end */
for (curr = base->next; curr; curr = curr->next) {
struct bdiff_hunk *next = curr->next;
if (!next)
break;
if (curr->a2 == next->a1 || curr->b2 == next->b1)
while (curr->a2 < an && curr->b2 < bn &&
next->a1 < next->a2 && next->b1 < next->b2 &&
!cmp(a + curr->a2, b + curr->b2)) {
curr->a2++;
next->a1++;
curr->b2++;
next->b1++;
}
}
for (curr = base->next; curr; curr = curr->next)
count++;
return count;
}
void bdiff_freehunks(struct bdiff_hunk *l)
{
struct bdiff_hunk *n;
for (; l; l = n) {
n = l->next;
free(l);
}
}