##// END OF EJS Templates
mq: extract strip function as its standalone extension (issue3824)...
mq: extract strip function as its standalone extension (issue3824) Strip now lives in its own extension reminder: The extension is surprisingly called `strip`. The `mq` extension force the use of the strip extension when its enabled. This is both necessary for backward compatibility (people expect `mq` to comes with strip) and become some utility function used by `mq` are now in the strip extension.

File last commit:

r18378:404feac7 default
r19826:4b1cbcfd default
Show More
encoding.py
287 lines | 9.4 KiB | text/x-python | PythonLexer
# encoding.py - character transcoding support for Mercurial
#
# Copyright 2005-2009 Matt Mackall <mpm@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
import error
import unicodedata, locale, os
def _getpreferredencoding():
'''
On darwin, getpreferredencoding ignores the locale environment and
always returns mac-roman. http://bugs.python.org/issue6202 fixes this
for Python 2.7 and up. This is the same corrected code for earlier
Python versions.
However, we can't use a version check for this method, as some distributions
patch Python to fix this. Instead, we use it as a 'fixer' for the mac-roman
encoding, as it is unlikely that this encoding is the actually expected.
'''
try:
locale.CODESET
except AttributeError:
# Fall back to parsing environment variables :-(
return locale.getdefaultlocale()[1]
oldloc = locale.setlocale(locale.LC_CTYPE)
locale.setlocale(locale.LC_CTYPE, "")
result = locale.nl_langinfo(locale.CODESET)
locale.setlocale(locale.LC_CTYPE, oldloc)
return result
_encodingfixers = {
'646': lambda: 'ascii',
'ANSI_X3.4-1968': lambda: 'ascii',
'mac-roman': _getpreferredencoding
}
try:
encoding = os.environ.get("HGENCODING")
if not encoding:
encoding = locale.getpreferredencoding() or 'ascii'
encoding = _encodingfixers.get(encoding, lambda: encoding)()
except locale.Error:
encoding = 'ascii'
encodingmode = os.environ.get("HGENCODINGMODE", "strict")
fallbackencoding = 'ISO-8859-1'
class localstr(str):
'''This class allows strings that are unmodified to be
round-tripped to the local encoding and back'''
def __new__(cls, u, l):
s = str.__new__(cls, l)
s._utf8 = u
return s
def __hash__(self):
return hash(self._utf8) # avoid collisions in local string space
def tolocal(s):
"""
Convert a string from internal UTF-8 to local encoding
All internal strings should be UTF-8 but some repos before the
implementation of locale support may contain latin1 or possibly
other character sets. We attempt to decode everything strictly
using UTF-8, then Latin-1, and failing that, we use UTF-8 and
replace unknown characters.
The localstr class is used to cache the known UTF-8 encoding of
strings next to their local representation to allow lossless
round-trip conversion back to UTF-8.
>>> u = 'foo: \\xc3\\xa4' # utf-8
>>> l = tolocal(u)
>>> l
'foo: ?'
>>> fromlocal(l)
'foo: \\xc3\\xa4'
>>> u2 = 'foo: \\xc3\\xa1'
>>> d = { l: 1, tolocal(u2): 2 }
>>> len(d) # no collision
2
>>> 'foo: ?' in d
False
>>> l1 = 'foo: \\xe4' # historical latin1 fallback
>>> l = tolocal(l1)
>>> l
'foo: ?'
>>> fromlocal(l) # magically in utf-8
'foo: \\xc3\\xa4'
"""
try:
try:
# make sure string is actually stored in UTF-8
u = s.decode('UTF-8')
if encoding == 'UTF-8':
# fast path
return s
r = u.encode(encoding, "replace")
if u == r.decode(encoding):
# r is a safe, non-lossy encoding of s
return r
return localstr(s, r)
except UnicodeDecodeError:
# we should only get here if we're looking at an ancient changeset
try:
u = s.decode(fallbackencoding)
r = u.encode(encoding, "replace")
if u == r.decode(encoding):
# r is a safe, non-lossy encoding of s
return r
return localstr(u.encode('UTF-8'), r)
except UnicodeDecodeError:
u = s.decode("utf-8", "replace") # last ditch
return u.encode(encoding, "replace") # can't round-trip
except LookupError, k:
raise error.Abort(k, hint="please check your locale settings")
def fromlocal(s):
"""
Convert a string from the local character encoding to UTF-8
We attempt to decode strings using the encoding mode set by
HGENCODINGMODE, which defaults to 'strict'. In this mode, unknown
characters will cause an error message. Other modes include
'replace', which replaces unknown characters with a special
Unicode character, and 'ignore', which drops the character.
"""
# can we do a lossless round-trip?
if isinstance(s, localstr):
return s._utf8
try:
return s.decode(encoding, encodingmode).encode("utf-8")
except UnicodeDecodeError, inst:
sub = s[max(0, inst.start - 10):inst.start + 10]
raise error.Abort("decoding near '%s': %s!" % (sub, inst))
except LookupError, k:
raise error.Abort(k, hint="please check your locale settings")
# How to treat ambiguous-width characters. Set to 'wide' to treat as wide.
wide = (os.environ.get("HGENCODINGAMBIGUOUS", "narrow") == "wide"
and "WFA" or "WF")
def colwidth(s):
"Find the column width of a string for display in the local encoding"
return ucolwidth(s.decode(encoding, 'replace'))
def ucolwidth(d):
"Find the column width of a Unicode string for display"
eaw = getattr(unicodedata, 'east_asian_width', None)
if eaw is not None:
return sum([eaw(c) in wide and 2 or 1 for c in d])
return len(d)
def getcols(s, start, c):
'''Use colwidth to find a c-column substring of s starting at byte
index start'''
for x in xrange(start + c, len(s)):
t = s[start:x]
if colwidth(t) == c:
return t
def lower(s):
"best-effort encoding-aware case-folding of local string s"
try:
s.decode('ascii') # throw exception for non-ASCII character
return s.lower()
except UnicodeDecodeError:
pass
try:
if isinstance(s, localstr):
u = s._utf8.decode("utf-8")
else:
u = s.decode(encoding, encodingmode)
lu = u.lower()
if u == lu:
return s # preserve localstring
return lu.encode(encoding)
except UnicodeError:
return s.lower() # we don't know how to fold this except in ASCII
except LookupError, k:
raise error.Abort(k, hint="please check your locale settings")
def upper(s):
"best-effort encoding-aware case-folding of local string s"
try:
s.decode('ascii') # throw exception for non-ASCII character
return s.upper()
except UnicodeDecodeError:
pass
try:
if isinstance(s, localstr):
u = s._utf8.decode("utf-8")
else:
u = s.decode(encoding, encodingmode)
uu = u.upper()
if u == uu:
return s # preserve localstring
return uu.encode(encoding)
except UnicodeError:
return s.upper() # we don't know how to fold this except in ASCII
except LookupError, k:
raise error.Abort(k, hint="please check your locale settings")
def toutf8b(s):
'''convert a local, possibly-binary string into UTF-8b
This is intended as a generic method to preserve data when working
with schemes like JSON and XML that have no provision for
arbitrary byte strings. As Mercurial often doesn't know
what encoding data is in, we use so-called UTF-8b.
If a string is already valid UTF-8 (or ASCII), it passes unmodified.
Otherwise, unsupported bytes are mapped to UTF-16 surrogate range,
uDC00-uDCFF.
Principles of operation:
- ASCII and UTF-8 data successfully round-trips and is understood
by Unicode-oriented clients
- filenames and file contents in arbitrary other encodings can have
be round-tripped or recovered by clueful clients
- local strings that have a cached known UTF-8 encoding (aka
localstr) get sent as UTF-8 so Unicode-oriented clients get the
Unicode data they want
- because we must preserve UTF-8 bytestring in places such as
filenames, metadata can't be roundtripped without help
(Note: "UTF-8b" often refers to decoding a mix of valid UTF-8 and
arbitrary bytes into an internal Unicode format that can be
re-encoded back into the original. Here we are exposing the
internal surrogate encoding as a UTF-8 string.)
'''
if isinstance(s, localstr):
return s._utf8
try:
if s.decode('utf-8'):
return s
except UnicodeDecodeError:
# surrogate-encode any characters that don't round-trip
s2 = s.decode('utf-8', 'ignore').encode('utf-8')
r = ""
pos = 0
for c in s:
if s2[pos:pos + 1] == c:
r += c
pos += 1
else:
r += unichr(0xdc00 + ord(c)).encode('utf-8')
return r
def fromutf8b(s):
'''Given a UTF-8b string, return a local, possibly-binary string.
return the original binary string. This
is a round-trip process for strings like filenames, but metadata
that's was passed through tolocal will remain in UTF-8.
>>> m = "\\xc3\\xa9\\x99abcd"
>>> n = toutf8b(m)
>>> n
'\\xc3\\xa9\\xed\\xb2\\x99abcd'
>>> fromutf8b(n) == m
True
'''
# fast path - look for uDxxx prefixes in s
if "\xed" not in s:
return s
u = s.decode("utf-8")
r = ""
for c in u:
if ord(c) & 0xff00 == 0xdc00:
r += chr(ord(c) & 0xff)
else:
r += c.encode("utf-8")
return r