##// END OF EJS Templates
revlog: introduce an explicit tracking of what the revlog is about...
revlog: introduce an explicit tracking of what the revlog is about Since the dawn of time, people have been forced to rely to lossy introspection of the index filename to determine what the purpose and role of the revlog they encounter is. This is hacky, error prone, inflexible, abstraction-leaky, <insert-your-own-complaints-here>. In f63299ee7e4d Raphaël introduced a new attribute to track this information: `revlog_kind`. However it is initialized in an odd place and various instances end up not having it set. In addition is only tracking some of the information we end up having to introspect in various pieces of code. So we add a new attribute that holds more data and is more strictly enforced. This work is done in collaboration with Raphaël. The `revlog_kind` one will be removed/adapted in the next changeset. We expect to be able to clean up various existing piece of code and to simplify coming work around the newer revlog format. Differential Revision: https://phab.mercurial-scm.org/D10352

File last commit:

r46434:c102b704 default
r47838:4c041c71 default
Show More
perf-revlog-write-plot.py
126 lines | 3.2 KiB | text/x-python | PythonLexer
/ contrib / perf-utils / perf-revlog-write-plot.py
#!/usr/bin/env python3
#
# Copyright 2018 Paul Morelle <Paul.Morelle@octobus.net>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
#
# This script use the output of `hg perfrevlogwrite -T json --details` to draw
# various plot related to write performance in a revlog
#
# usage: perf-revlog-write-plot.py details.json
from __future__ import absolute_import, print_function
import json
import re
import numpy as np
import scipy.signal
from matplotlib import (
pyplot as plt,
ticker as mticker,
)
def plot(data, title=None):
items = {}
re_title = re.compile(r'^revisions #\d+ of \d+, rev (\d+)$')
for item in data:
m = re_title.match(item['title'])
if m is None:
continue
rev = int(m.group(1))
items[rev] = item
min_rev = min(items.keys())
max_rev = max(items.keys())
ary = np.empty((2, max_rev - min_rev + 1))
for rev, item in items.items():
ary[0][rev - min_rev] = rev
ary[1][rev - min_rev] = item['wall']
fig = plt.figure()
comb_plt = fig.add_subplot(211)
other_plt = fig.add_subplot(212)
comb_plt.plot(
ary[0], np.cumsum(ary[1]), color='red', linewidth=1, label='comb'
)
plots = []
p = other_plt.plot(ary[0], ary[1], color='red', linewidth=1, label='wall')
plots.append(p)
colors = {
10: ('green', 'xkcd:grass green'),
100: ('blue', 'xkcd:bright blue'),
1000: ('purple', 'xkcd:dark pink'),
}
for n, color in colors.items():
avg_n = np.convolve(ary[1], np.full(n, 1.0 / n), 'valid')
p = other_plt.plot(
ary[0][n - 1 :],
avg_n,
color=color[0],
linewidth=1,
label='avg time last %d' % n,
)
plots.append(p)
med_n = scipy.signal.medfilt(ary[1], n + 1)
p = other_plt.plot(
ary[0],
med_n,
color=color[1],
linewidth=1,
label='median time last %d' % n,
)
plots.append(p)
formatter = mticker.ScalarFormatter()
formatter.set_scientific(False)
formatter.set_useOffset(False)
comb_plt.grid()
comb_plt.xaxis.set_major_formatter(formatter)
comb_plt.legend()
other_plt.grid()
other_plt.xaxis.set_major_formatter(formatter)
leg = other_plt.legend()
leg2plot = {}
for legline, plot in zip(leg.get_lines(), plots):
legline.set_picker(5)
leg2plot[legline] = plot
def onpick(event):
legline = event.artist
plot = leg2plot[legline]
visible = not plot[0].get_visible()
for l in plot:
l.set_visible(visible)
if visible:
legline.set_alpha(1.0)
else:
legline.set_alpha(0.2)
fig.canvas.draw()
if title is not None:
fig.canvas.set_window_title(title)
fig.canvas.mpl_connect('pick_event', onpick)
plt.show()
if __name__ == '__main__':
import sys
if len(sys.argv) > 1:
print('reading from %r' % sys.argv[1])
with open(sys.argv[1], 'r') as fp:
plot(json.load(fp), title=sys.argv[1])
else:
print('reading from stdin')
plot(json.load(sys.stdin))