##// END OF EJS Templates
namespaces: let namespaces override singlenode() definition...
namespaces: let namespaces override singlenode() definition Some namespaces have multiple nodes per name (meaning that their namemap() returns multiple nodes). One such namespace is the "topics" namespace (from the evolve repo). We also have our own internal namespace at Google (for review units) that has multiple nodes per name. These namespaces may not want to use the default "pick highest revnum" resolution that we currently use when resolving a name to a single node. As an example, they may decide that `hg co <name>` should check out a commit that's last in some sense even if an earlier commit had just been amended and thus had a higher revnum [1]. This patch gives the namespace the option to continue to return multiple nodes and to override how the best node is picked. Allowing namespaces to override that may also be useful as an optimization (it may be cheaper for the namespace to find just that node). I have been arguing (in D3715) for using all the nodes returned from namemap() when resolving the symbol to a revset, so e.g. `hg log -r stable` would resolve to *all* nodes on stable, not just the one with the highest revnum (except that I don't actually think we should change it for the branch namespace because of BC). Most people seem opposed to that. If we decide not to do it, I think we can deprecate the namemap() function in favor of the new singlenode() (I find it weird to have namespaces, like the branch namespace, where namemap() isn't nodemap()'s inverse). I therefore think this patch makes sense regardless of what we decide on that issue. [1] Actually, even the branch namespace would have wanted to override singlenode() if it had supported multiple nodes. That's because closes branch heads are mostly ignored, so "hg co default" will not check out the highest-revnum node if that's a closed head. Differential Revision: https://phab.mercurial-scm.org/D3852

File last commit:

r37862:670eb4fa default
r38505:4c068365 @58 default
Show More
demandimportpy2.py
304 lines | 10.6 KiB | text/x-python | PythonLexer
# demandimport.py - global demand-loading of modules for Mercurial
#
# Copyright 2006, 2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
'''
demandimport - automatic demandloading of modules
To enable this module, do:
import demandimport; demandimport.enable()
Imports of the following forms will be demand-loaded:
import a, b.c
import a.b as c
from a import b,c # a will be loaded immediately
These imports will not be delayed:
from a import *
b = __import__(a)
'''
from __future__ import absolute_import
import __builtin__ as builtins
import contextlib
import sys
contextmanager = contextlib.contextmanager
_origimport = __import__
nothing = object()
def _hgextimport(importfunc, name, globals, *args, **kwargs):
try:
return importfunc(name, globals, *args, **kwargs)
except ImportError:
if not globals:
raise
# extensions are loaded with "hgext_" prefix
hgextname = 'hgext_%s' % name
nameroot = hgextname.split('.', 1)[0]
contextroot = globals.get('__name__', '').split('.', 1)[0]
if nameroot != contextroot:
raise
# retry to import with "hgext_" prefix
return importfunc(hgextname, globals, *args, **kwargs)
class _demandmod(object):
"""module demand-loader and proxy
Specify 1 as 'level' argument at construction, to import module
relatively.
"""
def __init__(self, name, globals, locals, level):
if '.' in name:
head, rest = name.split('.', 1)
after = [rest]
else:
head = name
after = []
object.__setattr__(self, r"_data",
(head, globals, locals, after, level, set()))
object.__setattr__(self, r"_module", None)
def _extend(self, name):
"""add to the list of submodules to load"""
self._data[3].append(name)
def _addref(self, name):
"""Record that the named module ``name`` imports this module.
References to this proxy class having the name of this module will be
replaced at module load time. We assume the symbol inside the importing
module is identical to the "head" name of this module. We don't
actually know if "as X" syntax is being used to change the symbol name
because this information isn't exposed to __import__.
"""
self._data[5].add(name)
def _load(self):
if not self._module:
head, globals, locals, after, level, modrefs = self._data
mod = _hgextimport(_origimport, head, globals, locals, None, level)
if mod is self:
# In this case, _hgextimport() above should imply
# _demandimport(). Otherwise, _hgextimport() never
# returns _demandmod. This isn't intentional behavior,
# in fact. (see also issue5304 for detail)
#
# If self._module is already bound at this point, self
# should be already _load()-ed while _hgextimport().
# Otherwise, there is no way to import actual module
# as expected, because (re-)invoking _hgextimport()
# should cause same result.
# This is reason why _load() returns without any more
# setup but assumes self to be already bound.
mod = self._module
assert mod and mod is not self, "%s, %s" % (self, mod)
return
# load submodules
def subload(mod, p):
h, t = p, None
if '.' in p:
h, t = p.split('.', 1)
if getattr(mod, h, nothing) is nothing:
setattr(mod, h, _demandmod(p, mod.__dict__, mod.__dict__,
level=1))
elif t:
subload(getattr(mod, h), t)
for x in after:
subload(mod, x)
# Replace references to this proxy instance with the actual module.
if locals:
if locals.get(head) is self:
locals[head] = mod
elif locals.get(head + r'mod') is self:
locals[head + r'mod'] = mod
for modname in modrefs:
modref = sys.modules.get(modname, None)
if modref and getattr(modref, head, None) is self:
setattr(modref, head, mod)
object.__setattr__(self, r"_module", mod)
def __repr__(self):
if self._module:
return "<proxied module '%s'>" % self._data[0]
return "<unloaded module '%s'>" % self._data[0]
def __call__(self, *args, **kwargs):
raise TypeError("%s object is not callable" % repr(self))
def __getattr__(self, attr):
self._load()
return getattr(self._module, attr)
def __setattr__(self, attr, val):
self._load()
setattr(self._module, attr, val)
@property
def __dict__(self):
self._load()
return self._module.__dict__
@property
def __doc__(self):
self._load()
return self._module.__doc__
_pypy = '__pypy__' in sys.builtin_module_names
def _demandimport(name, globals=None, locals=None, fromlist=None, level=-1):
if locals is None or name in ignores or fromlist == ('*',):
# these cases we can't really delay
return _hgextimport(_origimport, name, globals, locals, fromlist, level)
elif not fromlist:
# import a [as b]
if '.' in name: # a.b
base, rest = name.split('.', 1)
# email.__init__ loading email.mime
if globals and globals.get('__name__', None) == base:
return _origimport(name, globals, locals, fromlist, level)
# if a is already demand-loaded, add b to its submodule list
if base in locals:
if isinstance(locals[base], _demandmod):
locals[base]._extend(rest)
return locals[base]
return _demandmod(name, globals, locals, level)
else:
# There is a fromlist.
# from a import b,c,d
# from . import b,c,d
# from .a import b,c,d
# level == -1: relative and absolute attempted (Python 2 only).
# level >= 0: absolute only (Python 2 w/ absolute_import and Python 3).
# The modern Mercurial convention is to use absolute_import everywhere,
# so modern Mercurial code will have level >= 0.
# The name of the module the import statement is located in.
globalname = globals.get('__name__')
def processfromitem(mod, attr):
"""Process an imported symbol in the import statement.
If the symbol doesn't exist in the parent module, and if the
parent module is a package, it must be a module. We set missing
modules up as _demandmod instances.
"""
symbol = getattr(mod, attr, nothing)
nonpkg = getattr(mod, '__path__', nothing) is nothing
if symbol is nothing:
if nonpkg:
# do not try relative import, which would raise ValueError,
# and leave unknown attribute as the default __import__()
# would do. the missing attribute will be detected later
# while processing the import statement.
return
mn = '%s.%s' % (mod.__name__, attr)
if mn in ignores:
importfunc = _origimport
else:
importfunc = _demandmod
symbol = importfunc(attr, mod.__dict__, locals, level=1)
setattr(mod, attr, symbol)
# Record the importing module references this symbol so we can
# replace the symbol with the actual module instance at load
# time.
if globalname and isinstance(symbol, _demandmod):
symbol._addref(globalname)
def chainmodules(rootmod, modname):
# recurse down the module chain, and return the leaf module
mod = rootmod
for comp in modname.split('.')[1:]:
obj = getattr(mod, comp, nothing)
if obj is nothing:
obj = _demandmod(comp, mod.__dict__, mod.__dict__, level=1)
setattr(mod, comp, obj)
elif mod.__name__ + '.' + comp in sys.modules:
# prefer loaded module over attribute (issue5617)
obj = sys.modules[mod.__name__ + '.' + comp]
mod = obj
return mod
if level >= 0:
if name:
# "from a import b" or "from .a import b" style
rootmod = _hgextimport(_origimport, name, globals, locals,
level=level)
mod = chainmodules(rootmod, name)
elif _pypy:
# PyPy's __import__ throws an exception if invoked
# with an empty name and no fromlist. Recreate the
# desired behaviour by hand.
mn = globalname
mod = sys.modules[mn]
if getattr(mod, '__path__', nothing) is nothing:
mn = mn.rsplit('.', 1)[0]
mod = sys.modules[mn]
if level > 1:
mn = mn.rsplit('.', level - 1)[0]
mod = sys.modules[mn]
else:
mod = _hgextimport(_origimport, name, globals, locals,
level=level)
for x in fromlist:
processfromitem(mod, x)
return mod
# But, we still need to support lazy loading of standard library and 3rd
# party modules. So handle level == -1.
mod = _hgextimport(_origimport, name, globals, locals)
mod = chainmodules(mod, name)
for x in fromlist:
processfromitem(mod, x)
return mod
ignores = set()
def init(ignoreset):
global ignores
ignores = ignoreset
def isenabled():
return builtins.__import__ == _demandimport
def enable():
"enable global demand-loading of modules"
builtins.__import__ = _demandimport
def disable():
"disable global demand-loading of modules"
builtins.__import__ = _origimport
@contextmanager
def deactivated():
"context manager for disabling demandimport in 'with' blocks"
demandenabled = isenabled()
if demandenabled:
disable()
try:
yield
finally:
if demandenabled:
enable()