##// END OF EJS Templates
namespaces: let namespaces override singlenode() definition...
namespaces: let namespaces override singlenode() definition Some namespaces have multiple nodes per name (meaning that their namemap() returns multiple nodes). One such namespace is the "topics" namespace (from the evolve repo). We also have our own internal namespace at Google (for review units) that has multiple nodes per name. These namespaces may not want to use the default "pick highest revnum" resolution that we currently use when resolving a name to a single node. As an example, they may decide that `hg co <name>` should check out a commit that's last in some sense even if an earlier commit had just been amended and thus had a higher revnum [1]. This patch gives the namespace the option to continue to return multiple nodes and to override how the best node is picked. Allowing namespaces to override that may also be useful as an optimization (it may be cheaper for the namespace to find just that node). I have been arguing (in D3715) for using all the nodes returned from namemap() when resolving the symbol to a revset, so e.g. `hg log -r stable` would resolve to *all* nodes on stable, not just the one with the highest revnum (except that I don't actually think we should change it for the branch namespace because of BC). Most people seem opposed to that. If we decide not to do it, I think we can deprecate the namemap() function in favor of the new singlenode() (I find it weird to have namespaces, like the branch namespace, where namemap() isn't nodemap()'s inverse). I therefore think this patch makes sense regardless of what we decide on that issue. [1] Actually, even the branch namespace would have wanted to override singlenode() if it had supported multiple nodes. That's because closes branch heads are mostly ignored, so "hg co default" will not check out the highest-revnum node if that's a closed head. Differential Revision: https://phab.mercurial-scm.org/D3852

File last commit:

r37153:ecac0006 default
r38505:4c068365 @58 default
Show More
__init__.py
154 lines | 5.5 KiB | text/x-python | PythonLexer
# Copyright 2009-2010 Gregory P. Ward
# Copyright 2009-2010 Intelerad Medical Systems Incorporated
# Copyright 2010-2011 Fog Creek Software
# Copyright 2010-2011 Unity Technologies
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
'''track large binary files
Large binary files tend to be not very compressible, not very
diffable, and not at all mergeable. Such files are not handled
efficiently by Mercurial's storage format (revlog), which is based on
compressed binary deltas; storing large binary files as regular
Mercurial files wastes bandwidth and disk space and increases
Mercurial's memory usage. The largefiles extension addresses these
problems by adding a centralized client-server layer on top of
Mercurial: largefiles live in a *central store* out on the network
somewhere, and you only fetch the revisions that you need when you
need them.
largefiles works by maintaining a "standin file" in .hglf/ for each
largefile. The standins are small (41 bytes: an SHA-1 hash plus
newline) and are tracked by Mercurial. Largefile revisions are
identified by the SHA-1 hash of their contents, which is written to
the standin. largefiles uses that revision ID to get/put largefile
revisions from/to the central store. This saves both disk space and
bandwidth, since you don't need to retrieve all historical revisions
of large files when you clone or pull.
To start a new repository or add new large binary files, just add
--large to your :hg:`add` command. For example::
$ dd if=/dev/urandom of=randomdata count=2000
$ hg add --large randomdata
$ hg commit -m "add randomdata as a largefile"
When you push a changeset that adds/modifies largefiles to a remote
repository, its largefile revisions will be uploaded along with it.
Note that the remote Mercurial must also have the largefiles extension
enabled for this to work.
When you pull a changeset that affects largefiles from a remote
repository, the largefiles for the changeset will by default not be
pulled down. However, when you update to such a revision, any
largefiles needed by that revision are downloaded and cached (if
they have never been downloaded before). One way to pull largefiles
when pulling is thus to use --update, which will update your working
copy to the latest pulled revision (and thereby downloading any new
largefiles).
If you want to pull largefiles you don't need for update yet, then
you can use pull with the `--lfrev` option or the :hg:`lfpull` command.
If you know you are pulling from a non-default location and want to
download all the largefiles that correspond to the new changesets at
the same time, then you can pull with `--lfrev "pulled()"`.
If you just want to ensure that you will have the largefiles needed to
merge or rebase with new heads that you are pulling, then you can pull
with `--lfrev "head(pulled())"` flag to pre-emptively download any largefiles
that are new in the heads you are pulling.
Keep in mind that network access may now be required to update to
changesets that you have not previously updated to. The nature of the
largefiles extension means that updating is no longer guaranteed to
be a local-only operation.
If you already have large files tracked by Mercurial without the
largefiles extension, you will need to convert your repository in
order to benefit from largefiles. This is done with the
:hg:`lfconvert` command::
$ hg lfconvert --size 10 oldrepo newrepo
In repositories that already have largefiles in them, any new file
over 10MB will automatically be added as a largefile. To change this
threshold, set ``largefiles.minsize`` in your Mercurial config file
to the minimum size in megabytes to track as a largefile, or use the
--lfsize option to the add command (also in megabytes)::
[largefiles]
minsize = 2
$ hg add --lfsize 2
The ``largefiles.patterns`` config option allows you to specify a list
of filename patterns (see :hg:`help patterns`) that should always be
tracked as largefiles::
[largefiles]
patterns =
*.jpg
re:.*\\.(png|bmp)$
library.zip
content/audio/*
Files that match one of these patterns will be added as largefiles
regardless of their size.
The ``largefiles.minsize`` and ``largefiles.patterns`` config options
will be ignored for any repositories not already containing a
largefile. To add the first largefile to a repository, you must
explicitly do so with the --large flag passed to the :hg:`add`
command.
'''
from __future__ import absolute_import
from mercurial import (
hg,
localrepo,
registrar,
)
from . import (
lfcommands,
overrides,
proto,
reposetup,
uisetup as uisetupmod,
)
# Note for extension authors: ONLY specify testedwith = 'ships-with-hg-core' for
# extensions which SHIP WITH MERCURIAL. Non-mainline extensions should
# be specifying the version(s) of Mercurial they are tested with, or
# leave the attribute unspecified.
testedwith = 'ships-with-hg-core'
configtable = {}
configitem = registrar.configitem(configtable)
configitem('largefiles', 'minsize',
default=configitem.dynamicdefault,
)
configitem('largefiles', 'patterns',
default=list,
)
configitem('largefiles', 'usercache',
default=None,
)
reposetup = reposetup.reposetup
def featuresetup(ui, supported):
# don't die on seeing a repo with the largefiles requirement
supported |= {'largefiles'}
def uisetup(ui):
localrepo.featuresetupfuncs.add(featuresetup)
hg.wirepeersetupfuncs.append(proto.wirereposetup)
uisetupmod.uisetup(ui)
cmdtable = lfcommands.cmdtable
revsetpredicate = overrides.revsetpredicate