##// END OF EJS Templates
revlog: change generaldelta delta parent heuristic...
revlog: change generaldelta delta parent heuristic The old generaldelta heuristic was "if p1 (or p2) was closer than the last full text, use it, otherwise use prev". This was problematic when a repo contained multiple branches that were very different. If commits to branch A were pushed, and the last full text was branch B, it would generate a fulltext. Then if branch B was pushed, it would generate another fulltext. The problem is that the last fulltext (and delta'ing against `prev` in general) has no correlation with the contents of the incoming revision, and therefore will always have degenerate cases. According to the blame, that algorithm was chosen to minimize the chain length. Since there is already code that protects against that (the delta-vs-fulltext code), and since it has been improved since the original generaldelta algorithm went in (2011), I believe the chain length criteria will still be preserved. The new algorithm always diffs against p1 (or p2 if it's closer), unless the resulting delta will fail the delta-vs-fulltext check, in which case we delta against prev. Some before and after stats on manifest.d size. internal large repo old heuristic - 2.0 GB new heuristic - 1.2 GB mozilla-central old heuristic - 242 MB new heuristic - 261 MB The regression in mozilla central is due to the new heuristic choosing p2r as the delta when it's closer to the tip. Switching the algorithm to always prefer p1r brings the size back down (242 MB). This is result of the way in which mozilla does merges and pushes, and the result could easily swing the other direction in other repos (depending on if they merge X into Y or Y into X), but will never be as degenerate as before. I future patch will address the regression by introducing an optional, even more aggressive delta heuristic which will knock the mozilla manifest size down dramatically.

File last commit:

r22575:d7f7f186 default
r26117:4dc5b51f default
Show More
dummycert.pem
56 lines | 2.2 KiB | application/pgp-keys | AscLexer
A dummy certificate that will make OS X 10.6+ Python use the system CA
certificate store:
-----BEGIN CERTIFICATE-----
MIIBIzCBzgIJANjmj39sb3FmMA0GCSqGSIb3DQEBBQUAMBkxFzAVBgNVBAMTDmhn
LmV4YW1wbGUuY29tMB4XDTE0MDgzMDA4NDU1OVoXDTE0MDgyOTA4NDU1OVowGTEX
MBUGA1UEAxMOaGcuZXhhbXBsZS5jb20wXDANBgkqhkiG9w0BAQEFAANLADBIAkEA
mh/ZySGlcq0ALNLmA1gZqt61HruywPrRk6WyrLJRgt+X7OP9FFlEfl2tzHfzqvmK
CtSQoPINWOdAJMekBYFgKQIDAQABMA0GCSqGSIb3DQEBBQUAA0EAF9h49LkSqJ6a
IlpogZuUHtihXeKZBsiktVIDlDccYsNy0RSh9XxUfhk+XMLw8jBlYvcltSXdJ7We
aKdQRekuMQ==
-----END CERTIFICATE-----
This certificate was generated to be syntactically valid but never be usable;
it expired before it became valid.
Created as:
$ cat > cn.conf << EOT
> [req]
> distinguished_name = req_distinguished_name
> [req_distinguished_name]
> commonName = Common Name
> commonName_default = no.example.com
> EOT
$ openssl req -nodes -new -x509 -keyout /dev/null \
> -out dummycert.pem -days -1 -config cn.conf -subj '/CN=hg.example.com'
To verify the content of this certificate:
$ openssl x509 -in dummycert.pem -noout -text
Certificate:
Data:
Version: 1 (0x0)
Serial Number: 15629337334278746470 (0xd8e68f7f6c6f7166)
Signature Algorithm: sha1WithRSAEncryption
Issuer: CN=hg.example.com
Validity
Not Before: Aug 30 08:45:59 2014 GMT
Not After : Aug 29 08:45:59 2014 GMT
Subject: CN=hg.example.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (512 bit)
Modulus:
00:9a:1f:d9:c9:21:a5:72:ad:00:2c:d2:e6:03:58:
19:aa:de:b5:1e:bb:b2:c0:fa:d1:93:a5:b2:ac:b2:
51:82:df:97:ec:e3:fd:14:59:44:7e:5d:ad:cc:77:
f3:aa:f9:8a:0a:d4:90:a0:f2:0d:58:e7:40:24:c7:
a4:05:81:60:29
Exponent: 65537 (0x10001)
Signature Algorithm: sha1WithRSAEncryption
17:d8:78:f4:b9:12:a8:9e:9a:22:5a:68:81:9b:94:1e:d8:a1:
5d:e2:99:06:c8:a4:b5:52:03:94:37:1c:62:c3:72:d1:14:a1:
f5:7c:54:7e:19:3e:5c:c2:f0:f2:30:65:62:f7:25:b5:25:dd:
27:b5:9e:68:a7:50:45:e9:2e:31