##// END OF EJS Templates
run-tests: call the command using shell=True to please Windows...
run-tests: call the command using shell=True to please Windows Windows is unhappy about the lack of shell=True, probably because the "self._realhg" is a script instead of a Win32 executable.

File last commit:

r53196:b422acba default
r53436:4f2bbad8 default
Show More
update.rs
551 lines | 20.4 KiB | application/rls-services+xml | RustLexer
//! Tools for moving the repository to a given revision
use std::{
fs::Permissions,
io::Write,
os::unix::fs::{MetadataExt, PermissionsExt},
path::Path,
sync::atomic::Ordering,
time::Duration,
};
use crate::{
dirstate::entry::{ParentFileData, TruncatedTimestamp},
dirstate::{dirstate_map::DirstateEntryReset, on_disk::write_tracked_key},
errors::{HgError, IoResultExt},
exit_codes, narrow,
operations::{list_rev_tracked_files, ExpandedManifestEntry},
progress::Progress,
repo::Repo,
revlog::filelog::Filelog,
revlog::node::NULL_NODE,
revlog::options::{default_revlog_options, RevlogOpenOptions},
revlog::RevlogError,
sparse,
utils::{
cap_default_rayon_threads,
files::{filesystem_now, get_path_from_bytes},
hg_path::{hg_path_to_path_buf, HgPath, HgPathError},
path_auditor::PathAuditor,
},
vfs::{is_on_nfs_mount, VfsImpl},
DirstateParents, UncheckedRevision, INTERRUPT_RECEIVED,
};
use crossbeam_channel::{Receiver, Sender};
use rayon::prelude::*;
fn write_dirstate(repo: &Repo) -> Result<(), HgError> {
repo.write_dirstate()
.map_err(|e| HgError::abort(e.to_string(), exit_codes::ABORT, None))?;
write_tracked_key(repo)
}
/// Update the current working copy of `repo` to the given revision `to`, from
/// the null revision and set + write out the dirstate to reflect that.
///
/// Do not call this outside of a Python context. This does *not* handle any
/// of the checks, hooks, lock taking needed to setup and get out of this
/// update from the null revision.
pub fn update_from_null(
repo: &Repo,
to: UncheckedRevision,
progress: &dyn Progress,
workers: Option<usize>,
) -> Result<usize, HgError> {
// Ignore the warnings, they've been displayed by Python already
// TODO non-Python clients: display narrow warnings
let (narrow_matcher, _) = narrow::matcher(repo)?;
let files_for_rev = list_rev_tracked_files(repo, to, narrow_matcher)
.map_err(handle_revlog_error)?;
repo.manually_set_parents(DirstateParents {
p1: repo.node(to).expect("update target should exist"),
p2: NULL_NODE,
})?;
// Filter the working copy according to the sparse spec
let tracked_files: Result<Vec<_>, _> = if !repo.has_sparse() {
files_for_rev.iter().collect()
} else {
// Ignore the warnings, they've been displayed by Python already
// TODO non-Python clients: display sparse warnings
let (sparse_matcher, _) = sparse::matcher(repo)?;
files_for_rev
.iter()
.filter(|f| {
match f {
Ok(f) => sparse_matcher.matches(f.0),
Err(_) => true, // Errors stop the update, include them
}
})
.collect()
};
let tracked_files = tracked_files?;
if tracked_files.is_empty() {
// Still write the dirstate because we might not be in the null
// revision.
// This can happen in narrow repos where all paths are excluded in
// this revision.
write_dirstate(repo)?;
return Ok(0);
}
let store_vfs = &repo.store_vfs();
let options = default_revlog_options(
repo.config(),
repo.requirements(),
crate::revlog::RevlogType::Filelog,
)?;
let (errors_sender, errors_receiver) = crossbeam_channel::unbounded();
let (files_sender, files_receiver) = crossbeam_channel::unbounded();
let working_directory_path = &repo.working_directory_path();
let files_count = tracked_files.len();
let chunks = chunk_tracked_files(tracked_files);
progress.update(0, Some(files_count as u64));
// TODO find a way (with `nix` or `signal-hook`?) of resetting the
// previous signal handler directly after. Currently, this is Python's
// job, but:
// - it introduces a (small) race between catching and resetting
// - it would break signal handlers in other contexts like `rhg``
let _ = ctrlc::set_handler(|| {
INTERRUPT_RECEIVED.store(true, Ordering::Relaxed)
});
create_working_copy(
chunks,
working_directory_path,
store_vfs,
options,
files_sender,
errors_sender,
progress,
workers,
);
// Reset the global interrupt now that we're done
if INTERRUPT_RECEIVED.swap(false, Ordering::Relaxed) {
// The threads have all exited early, let's re-raise
return Err(HgError::InterruptReceived);
}
let errors: Vec<HgError> = errors_receiver.iter().collect();
if !errors.is_empty() {
log::debug!("{} errors during update (see trace logs)", errors.len());
for error in errors.iter() {
log::trace!("{}", error);
}
// Best we can do is raise the first error (in order of the channel)
return Err(errors.into_iter().next().expect("can never be empty"));
}
// TODO try to run this concurrently to update the dirstate while we're
// still writing out the working copy to see if that improves performance.
let total = update_dirstate(repo, files_receiver)?;
write_dirstate(repo)?;
Ok(total)
}
fn handle_revlog_error(e: RevlogError) -> HgError {
match e {
crate::revlog::RevlogError::Other(hg_error) => hg_error,
e => HgError::abort(
format!("revlog error: {}", e),
exit_codes::ABORT,
None,
),
}
}
/// Preallocated size of Vec holding directory contents. This aims at
/// preventing the need for re-allocating the Vec in most cases.
///
/// The value is arbitrarily picked as a little over an average number of files
/// per directory done by looking at a few larger open-source repos.
/// Most of the runtime is IO anyway, so this doesn't matter too much.
const FILES_PER_DIRECTORY: usize = 16;
/// Chunk files per directory prefix, so almost every directory is handled
/// in a separate thread, which works around the FS inode mutex.
/// Chunking less (and doing approximately `files_count`/`threads`) actually
/// ends up being less performant: my hypothesis is `rayon`'s work stealing
/// being more efficient with tasks of varying lengths.
#[logging_timer::time("trace")]
fn chunk_tracked_files(
tracked_files: Vec<ExpandedManifestEntry>,
) -> Vec<(&HgPath, Vec<ExpandedManifestEntry>)> {
let files_count = tracked_files.len();
let mut chunks = Vec::with_capacity(files_count / FILES_PER_DIRECTORY);
let mut current_chunk = Vec::with_capacity(FILES_PER_DIRECTORY);
let mut last_directory = tracked_files[0].0.parent();
for file_info in tracked_files {
let current_directory = file_info.0.parent();
let different_directory = current_directory != last_directory;
if different_directory {
chunks.push((last_directory, current_chunk));
current_chunk = Vec::with_capacity(FILES_PER_DIRECTORY);
}
current_chunk.push(file_info);
last_directory = current_directory;
}
chunks.push((last_directory, current_chunk));
chunks
}
#[logging_timer::time("trace")]
#[allow(clippy::too_many_arguments)]
fn create_working_copy<'a: 'b, 'b>(
chunks: Vec<(&HgPath, Vec<ExpandedManifestEntry<'a>>)>,
working_directory_path: &Path,
store_vfs: &VfsImpl,
options: RevlogOpenOptions,
files_sender: Sender<(&'b HgPath, u32, usize, TruncatedTimestamp)>,
error_sender: Sender<HgError>,
progress: &dyn Progress,
workers: Option<usize>,
) {
let auditor = PathAuditor::new(working_directory_path);
let work_closure = |(dir_path, chunk)| -> Result<(), HgError> {
if let Err(e) = working_copy_worker(
dir_path,
chunk,
working_directory_path,
store_vfs,
options,
&files_sender,
progress,
&auditor,
) {
error_sender
.send(e)
.expect("channel should not be disconnected")
}
Ok(())
};
if let Some(workers) = workers {
if workers > 1 {
// Work in parallel, potentially restricting the number of threads
match rayon::ThreadPoolBuilder::new().num_threads(workers).build()
{
Err(error) => error_sender
.send(HgError::abort(
error.to_string(),
exit_codes::ABORT,
None,
))
.expect("channel should not be disconnected"),
Ok(pool) => {
log::trace!("restricting update to {} threads", workers);
pool.install(|| {
let _ =
chunks.into_par_iter().try_for_each(work_closure);
});
}
}
} else {
// Work sequentially, don't even invoke rayon
let _ = chunks.into_iter().try_for_each(work_closure);
}
} else {
// Work in parallel by default in the global threadpool
let _ = cap_default_rayon_threads();
let _ = chunks.into_par_iter().try_for_each(work_closure);
}
}
/// Represents a work unit for a single thread, responsible for this set of
/// files and restoring them to the working copy.
#[allow(clippy::too_many_arguments)]
fn working_copy_worker<'a: 'b, 'b>(
dir_path: &HgPath,
chunk: Vec<ExpandedManifestEntry<'a>>,
working_directory_path: &Path,
store_vfs: &VfsImpl,
options: RevlogOpenOptions,
files_sender: &Sender<(&'b HgPath, u32, usize, TruncatedTimestamp)>,
progress: &dyn Progress,
auditor: &PathAuditor,
) -> Result<(), HgError> {
let dir_path =
hg_path_to_path_buf(dir_path).expect("invalid path in manifest");
let dir_path = working_directory_path.join(dir_path);
std::fs::create_dir_all(&dir_path).when_writing_file(&dir_path)?;
if INTERRUPT_RECEIVED.load(Ordering::Relaxed) {
// Stop working, the user has requested that we stop
return Err(HgError::InterruptReceived);
}
for (file, file_node, flags) in chunk {
auditor.audit_path(file)?;
let flags = flags.map(|f| f.into());
let path =
working_directory_path.join(get_path_from_bytes(file.as_bytes()));
// Treemanifest is not supported
assert!(flags != Some(b't'));
let filelog = Filelog::open_vfs(store_vfs, file, options)?;
let filelog_revision_data = &filelog
.data_for_node(file_node)
.map_err(handle_revlog_error)?;
let file_data = filelog_revision_data.file_data()?;
if flags == Some(b'l') {
let target = get_path_from_bytes(file_data);
if let Err(e) = std::os::unix::fs::symlink(target, &path) {
// If the path already exists either:
// - another process created this file while ignoring the
// lock => error
// - our check for the fast path is incorrect => error
// - this is a malicious repo/bundle and this is symlink that
// tries to write things where it shouldn't be able to.
match e.kind() {
std::io::ErrorKind::AlreadyExists => {
let metadata = std::fs::symlink_metadata(&path)
.when_reading_file(&path)?;
if metadata.is_dir() {
return Err(HgError::Path(
HgPathError::TraversesSymbolicLink {
// Technically it should be one of the
// children, but good enough
path: file
.join(HgPath::new(b"*"))
.to_owned(),
symlink: file.to_owned(),
},
));
}
return Err(e).when_writing_file(&path);
}
_ => return Err(e).when_writing_file(&path),
}
}
} else {
let mut f =
std::fs::File::create(&path).when_writing_file(&path)?;
f.write_all(file_data).when_writing_file(&path)?;
}
if flags == Some(b'x') {
std::fs::set_permissions(&path, Permissions::from_mode(0o755))
.when_writing_file(&path)?;
}
let metadata =
std::fs::symlink_metadata(&path).when_reading_file(&path)?;
let mode = metadata.mode();
files_sender
.send((
file,
mode,
file_data.len(),
TruncatedTimestamp::for_mtime_of(&metadata)
.when_reading_file(&path)?,
))
.expect("channel should not be closed");
progress.increment(1, None);
}
Ok(())
}
#[logging_timer::time("trace")]
fn update_dirstate(
repo: &Repo,
files_receiver: Receiver<(&HgPath, u32, usize, TruncatedTimestamp)>,
) -> Result<usize, HgError> {
let mut dirstate = repo
.dirstate_map_mut()
.map_err(|e| HgError::abort(e.to_string(), exit_codes::ABORT, None))?;
// (see the comments in `filter_ambiguous_files` in `merge.py` for more)
// It turns out that (on Linux at least) the filesystem resolution time
// for most filesystems is based on the HZ kernel config. Their internal
// clocks do return nanoseconds if the hardware clock is precise enough,
// which should be the case on most recent computers but are only updated
// every few milliseconds at best (every "jiffy").
//
// We are still not concerned with fixing the race with other
// processes that might modify the working copy right after it was created
// within the same tick, because it is impossible to catch.
// However, we might as well not race with operations that could run right
// after this one, especially other Mercurial operations that could be
// waiting for the wlock to change file contents and the dirstate.
//
// Thus: wait until the filesystem clock has ticked to filter ambiguous
// entries and write the dirstate, but only for dirstate-v2, since v1 only
// has second-level granularity and waiting for a whole second is too much
// of a penalty in the general case.
// Although we're assuming that people running dirstate-v2 on Linux
// don't have a second-granularity FS (with the exclusion of NFS), users
// can be surprising, and at some point in the future dirstate-v2 will
// become the default. To that end, we limit the wait time to 100ms and
// fall back to the filter method in case of a timeout.
//
// +------------+------+--------------+
// | version | wait | filter level |
// +------------+------+--------------+
// | V1 | No | Second |
// | V2 | Yes | Nanosecond |
// | V2-slow-fs | No | Second |
// +------------+------+--------------+
let dirstate_v2 = repo.use_dirstate_v2();
// Let's ignore NFS right off the bat
let mut fast_enough_fs = !is_on_nfs_mount(repo.working_directory_path());
let fs_time_now = if dirstate_v2 && fast_enough_fs {
match wait_until_fs_tick(repo.working_directory_path()) {
None => None,
Some(Ok(time)) => Some(time),
Some(Err(time)) => {
fast_enough_fs = false;
Some(time)
}
}
} else {
filesystem_now(repo.working_directory_path())
.ok()
.map(TruncatedTimestamp::from)
};
let mut total = 0;
for (filename, mode, size, mtime) in files_receiver.into_iter() {
total += 1;
// When using dirstate-v2 on a filesystem with reasonable performance
// this is basically always true unless you get a mtime from the
// far future.
let has_meaningful_mtime = if let Some(fs_time) = fs_time_now {
mtime.for_reliable_mtime_of_self(&fs_time).is_some_and(|t| {
// Dirstate-v1 only has second-level information
!t.second_ambiguous || dirstate_v2 && fast_enough_fs
})
} else {
// We somehow failed to write to the filesystem, so don't store
// the cache information.
false
};
let reset = DirstateEntryReset {
filename,
wc_tracked: true,
p1_tracked: true,
p2_info: false,
has_meaningful_mtime,
parent_file_data_opt: Some(ParentFileData {
mode_size: Some((
mode,
size.try_into().expect("invalid file size in manifest"),
)),
mtime: Some(mtime),
}),
from_empty: true,
};
dirstate.reset_state(reset).map_err(|e| {
HgError::abort(e.to_string(), exit_codes::ABORT, None)
})?;
}
Ok(total)
}
/// Wait until the next update from the filesystem time by writing in a loop
/// a new temporary file inside the working directory and checking if its time
/// differs from the first one observed.
///
/// Returns `None` if we are unable to get the filesystem time,
/// `Some(Err(timestamp))` if we've timed out waiting for the filesystem clock
/// to tick, and `Some(Ok(timestamp))` if we've waited successfully.
///
/// On Linux, your average tick is going to be a "jiffy", or 1/HZ.
/// HZ is your kernel's tick rate (if it has one configured) and the value
/// is the one returned by `grep 'CONFIG_HZ=' /boot/config-$(uname -r)`,
/// again assuming a normal setup.
///
/// In my case (Alphare) at the time of writing, I get `CONFIG_HZ=250`,
/// which equates to 4ms.
///
/// This might change with a series that could make it to Linux 6.12:
/// https://lore.kernel.org/all/20241002-mgtime-v10-8-d1c4717f5284@kernel.org
fn wait_until_fs_tick(
working_directory_path: &Path,
) -> Option<Result<TruncatedTimestamp, TruncatedTimestamp>> {
let start = std::time::Instant::now();
let old_fs_time = filesystem_now(working_directory_path).ok()?;
let mut fs_time = filesystem_now(working_directory_path).ok()?;
const FS_TICK_WAIT_TIMEOUT: Duration = Duration::from_millis(100);
while fs_time == old_fs_time {
if std::time::Instant::now() - start > FS_TICK_WAIT_TIMEOUT {
log::trace!(
"timed out waiting for the fs clock to tick after {:?}",
FS_TICK_WAIT_TIMEOUT
);
return Some(Err(TruncatedTimestamp::from(old_fs_time)));
}
fs_time = filesystem_now(working_directory_path).ok()?;
}
log::trace!(
"waited for {:?} before writing the dirstate",
fs_time.duration_since(old_fs_time)
);
Some(Ok(TruncatedTimestamp::from(fs_time)))
}
#[cfg(test)]
mod test {
use super::*;
use pretty_assertions::assert_eq;
#[test]
fn test_chunk_tracked_files() {
fn chunk(v: Vec<&'static str>) -> Vec<ExpandedManifestEntry> {
v.into_iter()
.map(|f| (HgPath::new(f.as_bytes()), NULL_NODE, None))
.collect()
}
let p = HgPath::new;
let files = chunk(vec!["a"]);
let expected = vec![(p(""), chunk(vec!["a"]))];
assert_eq!(chunk_tracked_files(files), expected);
let files = chunk(vec!["a", "b", "c"]);
let expected = vec![(p(""), chunk(vec!["a", "b", "c"]))];
assert_eq!(chunk_tracked_files(files), expected);
let files = chunk(vec![
"dir/a-new",
"dir/a/mut",
"dir/a/mut-mut",
"dir/albert",
"dir/b",
"dir/subdir/c",
"dir/subdir/d",
"file",
]);
let expected = vec![
(p("dir"), chunk(vec!["dir/a-new"])),
(p("dir/a"), chunk(vec!["dir/a/mut", "dir/a/mut-mut"])),
(p("dir"), chunk(vec!["dir/albert", "dir/b"])),
(p("dir/subdir"), chunk(vec!["dir/subdir/c", "dir/subdir/d"])),
(p(""), chunk(vec!["file"])),
];
assert_eq!(chunk_tracked_files(files), expected);
// Doesn't get split
let large_dir = vec![
"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
"13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23",
];
let files = chunk(large_dir.clone());
let expected = vec![(p(""), chunk(large_dir))];
assert_eq!(chunk_tracked_files(files), expected);
}
}