##// END OF EJS Templates
rhg: avoid calculating copies for status --no-status...
rhg: avoid calculating copies for status --no-status This changes how rhg status avoids printing copies with --no-status. Originally 668a871454e8 added a check right before printing copies. This changes it to match Python and check it earlier by defining `list_copies = ... && !no_status`. This makes no difference now, but when we implement --rev --rev --copies it will ensure we don't do wasteful copy tracing when it's not going to be printed.

File last commit:

r53188:f90796d3 default
r53239:53dc147b default
Show More
ancestors.rs
846 lines | 26.7 KiB | application/rls-services+xml | RustLexer
// ancestors.rs
//
// Copyright 2018 Georges Racinet <gracinet@anybox.fr>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Rust versions of generic DAG ancestors algorithms for Mercurial
use super::{Graph, GraphError, Revision, NULL_REVISION};
use crate::dagops;
use std::cmp::max;
use std::collections::{BinaryHeap, HashSet};
/// Iterator over the ancestors of a given list of revisions
/// This is a generic type, defined and implemented for any Graph, so that
/// it's easy to
///
/// - unit test in pure Rust
/// - bind to main Mercurial code, potentially in several ways and have these
/// bindings evolve over time
pub struct AncestorsIterator<G: Graph> {
graph: G,
visit: BinaryHeap<Revision>,
seen: HashSet<Revision>,
stoprev: Revision,
}
pub struct MissingAncestors<G: Graph> {
graph: G,
bases: HashSet<Revision>,
max_base: Revision,
}
impl<G: Graph> AncestorsIterator<G> {
/// Constructor.
///
/// if `inclusive` is true, then the init revisions are emitted in
/// particular, otherwise iteration starts from their parents.
pub fn new(
graph: G,
initrevs: impl IntoIterator<Item = Revision>,
stoprev: Revision,
inclusive: bool,
) -> Result<Self, GraphError> {
let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev);
if inclusive {
let visit: BinaryHeap<Revision> = filtered_initrevs.collect();
let seen = visit.iter().cloned().collect();
return Ok(AncestorsIterator {
visit,
seen,
stoprev,
graph,
});
}
let mut this = AncestorsIterator {
visit: BinaryHeap::new(),
seen: HashSet::new(),
stoprev,
graph,
};
this.seen.insert(NULL_REVISION);
for rev in filtered_initrevs {
for parent in this.graph.parents(rev)?.iter().cloned() {
this.conditionally_push_rev(parent);
}
}
Ok(this)
}
#[inline]
fn conditionally_push_rev(&mut self, rev: Revision) {
if self.stoprev <= rev && self.seen.insert(rev) {
self.visit.push(rev);
}
}
/// Consumes partially the iterator to tell if the given target
/// revision
/// is in the ancestors it emits.
/// This is meant for iterators actually dedicated to that kind of
/// purpose
pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> {
if self.seen.contains(&target) && target != NULL_REVISION {
return Ok(true);
}
for item in self {
let rev = item?;
if rev == target {
return Ok(true);
}
if rev < target {
return Ok(false);
}
}
Ok(false)
}
pub fn peek(&self) -> Option<Revision> {
self.visit.peek().cloned()
}
/// Tell if the iterator is about an empty set
///
/// The result does not depend whether the iterator has been consumed
/// or not.
/// This is mostly meant for iterators backing a lazy ancestors set
pub fn is_empty(&self) -> bool {
if self.visit.len() > 0 {
return false;
}
if self.seen.len() > 1 {
return false;
}
// at this point, the seen set is at most a singleton.
// If not `self.inclusive`, it's still possible that it has only
// the null revision
self.seen.is_empty() || self.seen.contains(&NULL_REVISION)
}
}
/// Main implementation for the iterator
///
/// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py`
/// with a few non crucial differences:
///
/// - there's no filtering of invalid parent revisions. Actually, it should be
/// consistent and more efficient to filter them from the end caller.
/// - we don't have the optimization for adjacent revisions (i.e., the case
/// where `p1 == rev - 1`), because it amounts to update the first element of
/// the heap without sifting, which Rust's BinaryHeap doesn't let us do.
/// - we save a few pushes by comparing with `stoprev` before pushing
impl<G: Graph> Iterator for AncestorsIterator<G> {
type Item = Result<Revision, GraphError>;
fn next(&mut self) -> Option<Self::Item> {
let current = match self.visit.peek() {
None => {
return None;
}
Some(c) => *c,
};
let [p1, p2] = match self.graph.parents(current) {
Ok(ps) => ps,
Err(e) => return Some(Err(e)),
};
if p1 < self.stoprev || !self.seen.insert(p1) {
self.visit.pop();
} else {
*(self.visit.peek_mut().unwrap()) = p1;
};
self.conditionally_push_rev(p2);
Some(Ok(current))
}
}
impl<G: Graph> MissingAncestors<G> {
pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self {
let mut created = MissingAncestors {
graph,
bases: HashSet::new(),
max_base: NULL_REVISION,
};
created.add_bases(bases);
created
}
pub fn has_bases(&self) -> bool {
!self.bases.is_empty()
}
/// Return a reference to current bases.
///
/// This is useful in unit tests, but also setdiscovery.py does
/// read the bases attribute of a ancestor.missingancestors instance.
pub fn get_bases(&self) -> &HashSet<Revision> {
&self.bases
}
/// Computes the relative heads of current bases.
///
/// The object is still usable after this.
pub fn bases_heads(&self) -> Result<HashSet<Revision>, GraphError> {
dagops::heads(&self.graph, self.bases.iter())
}
/// Consumes the object and returns the relative heads of its bases.
pub fn into_bases_heads(
mut self,
) -> Result<HashSet<Revision>, GraphError> {
dagops::retain_heads(&self.graph, &mut self.bases)?;
Ok(self.bases)
}
/// Add some revisions to `self.bases`
///
/// Takes care of keeping `self.max_base` up to date.
pub fn add_bases(
&mut self,
new_bases: impl IntoIterator<Item = Revision>,
) {
let mut max_base = self.max_base;
self.bases.extend(
new_bases
.into_iter()
.filter(|&rev| rev != NULL_REVISION)
.inspect(|&r| {
if r > max_base {
max_base = r;
}
}),
);
self.max_base = max_base;
}
/// Remove all ancestors of self.bases from the revs set (in place)
pub fn remove_ancestors_from(
&mut self,
revs: &mut HashSet<Revision>,
) -> Result<(), GraphError> {
revs.retain(|r| !self.bases.contains(r));
// the null revision is always an ancestor. Logically speaking
// it's debatable in case bases is empty, but the Python
// implementation always adds NULL_REVISION to bases, making it
// unconditionnally true.
revs.remove(&NULL_REVISION);
if revs.is_empty() {
return Ok(());
}
// anything in revs > start is definitely not an ancestor of bases
// revs <= start need to be investigated
if self.max_base == NULL_REVISION {
return Ok(());
}
// whatever happens, we'll keep at least keepcount of them
// knowing this gives us a earlier stop condition than
// going all the way to the root
let keepcount = revs.iter().filter(|r| **r > self.max_base).count();
let mut curr = self.max_base;
while curr != NULL_REVISION && revs.len() > keepcount {
if self.bases.contains(&curr) {
revs.remove(&curr);
self.add_parents(curr)?;
}
// We know this revision is safe because we've checked the bounds
// before.
curr = Revision(curr.0 - 1);
}
Ok(())
}
/// Add the parents of `rev` to `self.bases`
///
/// This has no effect on `self.max_base`
#[inline]
fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> {
if rev == NULL_REVISION {
return Ok(());
}
for p in self.graph.parents(rev)?.iter().cloned() {
// No need to bother the set with inserting NULL_REVISION over and
// over
if p != NULL_REVISION {
self.bases.insert(p);
}
}
Ok(())
}
/// Return all the ancestors of revs that are not ancestors of self.bases
///
/// This may include elements from revs.
///
/// Equivalent to the revset (::revs - ::self.bases). Revs are returned in
/// revision number order, which is a topological order.
pub fn missing_ancestors(
&mut self,
revs: impl IntoIterator<Item = Revision>,
) -> Result<Vec<Revision>, GraphError> {
// just for convenience and comparison with Python version
let bases_visit = &mut self.bases;
let mut revs: HashSet<Revision> = revs
.into_iter()
.filter(|r| !bases_visit.contains(r))
.collect();
let revs_visit = &mut revs;
let mut both_visit: HashSet<Revision> =
revs_visit.intersection(bases_visit).cloned().collect();
if revs_visit.is_empty() {
return Ok(Vec::new());
}
let max_revs = revs_visit.iter().cloned().max().unwrap();
let start = max(self.max_base, max_revs);
// TODO heuristics for with_capacity()?
let mut missing: Vec<Revision> = Vec::new();
for curr in (0..=start.0).rev() {
if revs_visit.is_empty() {
break;
}
if both_visit.remove(&Revision(curr)) {
// curr's parents might have made it into revs_visit through
// another path
for p in self.graph.parents(Revision(curr))?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
revs_visit.remove(&p);
bases_visit.insert(p);
both_visit.insert(p);
}
} else if revs_visit.remove(&Revision(curr)) {
missing.push(Revision(curr));
for p in self.graph.parents(Revision(curr))?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
if bases_visit.contains(&p) {
// p is already known to be an ancestor of revs_visit
revs_visit.remove(&p);
both_visit.insert(p);
} else if both_visit.contains(&p) {
// p should have been in bases_visit
revs_visit.remove(&p);
bases_visit.insert(p);
} else {
// visit later
revs_visit.insert(p);
}
}
} else if bases_visit.contains(&Revision(curr)) {
for p in self.graph.parents(Revision(curr))?.iter().cloned() {
if p == NULL_REVISION {
continue;
}
if revs_visit.remove(&p) || both_visit.contains(&p) {
// p is an ancestor of bases_visit, and is implicitly
// in revs_visit, which means p is ::revs & ::bases.
bases_visit.insert(p);
both_visit.insert(p);
} else {
bases_visit.insert(p);
}
}
}
}
missing.reverse();
Ok(missing)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
testing::{SampleGraph, VecGraph},
BaseRevision,
};
impl From<BaseRevision> for Revision {
fn from(value: BaseRevision) -> Self {
if !cfg!(test) {
panic!("should only be used in tests")
}
Revision(value)
}
}
impl PartialEq<BaseRevision> for Revision {
fn eq(&self, other: &BaseRevision) -> bool {
if !cfg!(test) {
panic!("should only be used in tests")
}
self.0.eq(other)
}
}
impl PartialEq<u32> for Revision {
fn eq(&self, other: &u32) -> bool {
if !cfg!(test) {
panic!("should only be used in tests")
}
let check: Result<u32, _> = self.0.try_into();
match check {
Ok(value) => value.eq(other),
Err(_) => false,
}
}
}
fn list_ancestors<G: Graph>(
graph: G,
initrevs: Vec<Revision>,
stoprev: Revision,
inclusive: bool,
) -> Vec<Revision> {
AncestorsIterator::new(graph, initrevs, stoprev, inclusive)
.unwrap()
.map(|res| res.unwrap())
.collect()
}
#[test]
/// Same tests as test-ancestor.py, without membership
/// (see also test-ancestor.py.out)
fn test_list_ancestor() {
assert_eq!(
list_ancestors(SampleGraph, vec![], 0.into(), false),
Vec::<Revision>::new()
);
assert_eq!(
list_ancestors(
SampleGraph,
vec![11.into(), 13.into()],
0.into(),
false
),
vec![8, 7, 4, 3, 2, 1, 0]
);
// it works as well on references, because &Graph implements Graph
// this is needed as of this writing by RHGitaly
assert_eq!(
list_ancestors(
&SampleGraph,
vec![11.into(), 13.into()],
0.into(),
false
),
vec![8, 7, 4, 3, 2, 1, 0]
);
assert_eq!(
list_ancestors(
SampleGraph,
vec![1.into(), 3.into()],
0.into(),
false
),
vec![1, 0]
);
assert_eq!(
list_ancestors(
SampleGraph,
vec![11.into(), 13.into()],
0.into(),
true
),
vec![13, 11, 8, 7, 4, 3, 2, 1, 0]
);
assert_eq!(
list_ancestors(
SampleGraph,
vec![11.into(), 13.into()],
6.into(),
false
),
vec![8, 7]
);
assert_eq!(
list_ancestors(
SampleGraph,
vec![11.into(), 13.into()],
6.into(),
true
),
vec![13, 11, 8, 7]
);
assert_eq!(
list_ancestors(
SampleGraph,
vec![11.into(), 13.into()],
11.into(),
true
),
vec![13, 11]
);
assert_eq!(
list_ancestors(
SampleGraph,
vec![11.into(), 13.into()],
12.into(),
true
),
vec![13]
);
assert_eq!(
list_ancestors(
SampleGraph,
vec![10.into(), 1.into()],
0.into(),
true
),
vec![10, 5, 4, 2, 1, 0]
);
}
#[test]
/// Corner case that's not directly in test-ancestors.py, but
/// that happens quite often, as demonstrated by running the whole
/// suite.
/// For instance, run tests/test-obsolete-checkheads.t
fn test_nullrev_input() {
let mut iter = AncestorsIterator::new(
SampleGraph,
vec![Revision(-1)],
0.into(),
false,
)
.unwrap();
assert_eq!(iter.next(), None)
}
#[test]
fn test_contains() {
let mut lazy = AncestorsIterator::new(
SampleGraph,
vec![10.into(), 1.into()],
0.into(),
true,
)
.unwrap();
assert!(lazy.contains(1.into()).unwrap());
assert!(!lazy.contains(3.into()).unwrap());
let mut lazy = AncestorsIterator::new(
SampleGraph,
vec![0.into()],
0.into(),
false,
)
.unwrap();
assert!(!lazy.contains(NULL_REVISION).unwrap());
}
#[test]
fn test_peek() {
let mut iter = AncestorsIterator::new(
SampleGraph,
vec![10.into()],
0.into(),
true,
)
.unwrap();
// peek() gives us the next value
assert_eq!(iter.peek(), Some(10.into()));
// but it's not been consumed
assert_eq!(iter.next(), Some(Ok(10.into())));
// and iteration resumes normally
assert_eq!(iter.next(), Some(Ok(5.into())));
// let's drain the iterator to test peek() at the end
while iter.next().is_some() {}
assert_eq!(iter.peek(), None);
}
#[test]
fn test_empty() {
let mut iter = AncestorsIterator::new(
SampleGraph,
vec![10.into()],
0.into(),
true,
)
.unwrap();
assert!(!iter.is_empty());
while iter.next().is_some() {}
assert!(!iter.is_empty());
let iter = AncestorsIterator::new(SampleGraph, vec![], 0.into(), true)
.unwrap();
assert!(iter.is_empty());
// case where iter.seen == {NULL_REVISION}
let iter = AncestorsIterator::new(
SampleGraph,
vec![0.into()],
0.into(),
false,
)
.unwrap();
assert!(iter.is_empty());
}
/// A corrupted Graph, supporting error handling tests
#[derive(Clone, Debug)]
struct Corrupted;
impl Graph for Corrupted {
// FIXME what to do about this? Are we just not supposed to get them
// anymore?
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
match rev {
Revision(1) => Ok([0.into(), (-1).into()]),
r => Err(GraphError::ParentOutOfRange(r)),
}
}
}
#[test]
fn test_initrev_out_of_range() {
// inclusive=false looks up initrev's parents right away
match AncestorsIterator::new(
SampleGraph,
vec![25.into()],
0.into(),
false,
) {
Ok(_) => panic!("Should have been ParentOutOfRange"),
Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25.into())),
}
}
#[test]
fn test_next_out_of_range() {
// inclusive=false looks up initrev's parents right away
let mut iter =
AncestorsIterator::new(Corrupted, vec![1.into()], 0.into(), false)
.unwrap();
assert_eq!(
iter.next(),
Some(Err(GraphError::ParentOutOfRange(0.into())))
);
}
#[test]
/// Test constructor, add/get bases and heads
fn test_missing_bases() -> Result<(), GraphError> {
let mut missing_ancestors = MissingAncestors::new(
SampleGraph,
[5.into(), 3.into(), 1.into(), 3.into()].iter().cloned(),
);
let mut as_vec: Vec<Revision> =
missing_ancestors.get_bases().iter().cloned().collect();
as_vec.sort_unstable();
assert_eq!(as_vec, [1, 3, 5]);
assert_eq!(missing_ancestors.max_base, 5);
missing_ancestors
.add_bases([3.into(), 7.into(), 8.into()].iter().cloned());
as_vec = missing_ancestors.get_bases().iter().cloned().collect();
as_vec.sort_unstable();
assert_eq!(as_vec, [1, 3, 5, 7, 8]);
assert_eq!(missing_ancestors.max_base, 8);
as_vec = missing_ancestors.bases_heads()?.iter().cloned().collect();
as_vec.sort_unstable();
assert_eq!(as_vec, [3, 5, 7, 8]);
Ok(())
}
fn assert_missing_remove(
bases: &[BaseRevision],
revs: &[BaseRevision],
expected: &[BaseRevision],
) {
let mut missing_ancestors = MissingAncestors::new(
SampleGraph,
bases.iter().map(|r| Revision(*r)),
);
let mut revset: HashSet<Revision> =
revs.iter().map(|r| Revision(*r)).collect();
missing_ancestors
.remove_ancestors_from(&mut revset)
.unwrap();
let mut as_vec: Vec<Revision> = revset.into_iter().collect();
as_vec.sort_unstable();
assert_eq!(as_vec.as_slice(), expected);
}
#[test]
fn test_missing_remove() {
assert_missing_remove(
&[1, 2, 3, 4, 7],
Vec::from_iter(1..10).as_slice(),
&[5, 6, 8, 9],
);
assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]);
assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]);
}
fn assert_missing_ancestors(
bases: &[BaseRevision],
revs: &[BaseRevision],
expected: &[BaseRevision],
) {
let mut missing_ancestors = MissingAncestors::new(
SampleGraph,
bases.iter().map(|r| Revision(*r)),
);
let missing = missing_ancestors
.missing_ancestors(revs.iter().map(|r| Revision(*r)))
.unwrap();
assert_eq!(missing.as_slice(), expected);
}
#[test]
fn test_missing_ancestors() {
// examples taken from test-ancestors.py by having it run
// on the same graph (both naive and fast Python algs)
assert_missing_ancestors(&[10], &[11], &[3, 7, 11]);
assert_missing_ancestors(&[11], &[10], &[5, 10]);
assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]);
}
/// An interesting case found by a random generator similar to
/// the one in test-ancestor.py. An early version of Rust MissingAncestors
/// failed this, yet none of the integration tests of the whole suite
/// catched it.
#[allow(clippy::unnecessary_cast)]
#[test]
fn test_remove_ancestors_from_case1() {
const FAKE_NULL_REVISION: BaseRevision = -1;
assert_eq!(FAKE_NULL_REVISION, NULL_REVISION.0);
let graph: VecGraph = vec![
[FAKE_NULL_REVISION, FAKE_NULL_REVISION],
[0, FAKE_NULL_REVISION],
[1, 0],
[2, 1],
[3, FAKE_NULL_REVISION],
[4, FAKE_NULL_REVISION],
[5, 1],
[2, FAKE_NULL_REVISION],
[7, FAKE_NULL_REVISION],
[8, FAKE_NULL_REVISION],
[9, FAKE_NULL_REVISION],
[10, 1],
[3, FAKE_NULL_REVISION],
[12, FAKE_NULL_REVISION],
[13, FAKE_NULL_REVISION],
[14, FAKE_NULL_REVISION],
[4, FAKE_NULL_REVISION],
[16, FAKE_NULL_REVISION],
[17, FAKE_NULL_REVISION],
[18, FAKE_NULL_REVISION],
[19, 11],
[20, FAKE_NULL_REVISION],
[21, FAKE_NULL_REVISION],
[22, FAKE_NULL_REVISION],
[23, FAKE_NULL_REVISION],
[2, FAKE_NULL_REVISION],
[3, FAKE_NULL_REVISION],
[26, 24],
[27, FAKE_NULL_REVISION],
[28, FAKE_NULL_REVISION],
[12, FAKE_NULL_REVISION],
[1, FAKE_NULL_REVISION],
[1, 9],
[32, FAKE_NULL_REVISION],
[33, FAKE_NULL_REVISION],
[34, 31],
[35, FAKE_NULL_REVISION],
[36, 26],
[37, FAKE_NULL_REVISION],
[38, FAKE_NULL_REVISION],
[39, FAKE_NULL_REVISION],
[40, FAKE_NULL_REVISION],
[41, FAKE_NULL_REVISION],
[42, 26],
[0, FAKE_NULL_REVISION],
[44, FAKE_NULL_REVISION],
[45, 4],
[40, FAKE_NULL_REVISION],
[47, FAKE_NULL_REVISION],
[36, 0],
[49, FAKE_NULL_REVISION],
[FAKE_NULL_REVISION, FAKE_NULL_REVISION],
[51, FAKE_NULL_REVISION],
[52, FAKE_NULL_REVISION],
[53, FAKE_NULL_REVISION],
[14, FAKE_NULL_REVISION],
[55, FAKE_NULL_REVISION],
[15, FAKE_NULL_REVISION],
[23, FAKE_NULL_REVISION],
[58, FAKE_NULL_REVISION],
[59, FAKE_NULL_REVISION],
[2, FAKE_NULL_REVISION],
[61, 59],
[62, FAKE_NULL_REVISION],
[63, FAKE_NULL_REVISION],
[FAKE_NULL_REVISION, FAKE_NULL_REVISION],
[65, FAKE_NULL_REVISION],
[66, FAKE_NULL_REVISION],
[67, FAKE_NULL_REVISION],
[68, FAKE_NULL_REVISION],
[37, 28],
[69, 25],
[71, FAKE_NULL_REVISION],
[72, FAKE_NULL_REVISION],
[50, 2],
[74, FAKE_NULL_REVISION],
[12, FAKE_NULL_REVISION],
[18, FAKE_NULL_REVISION],
[77, FAKE_NULL_REVISION],
[78, FAKE_NULL_REVISION],
[79, FAKE_NULL_REVISION],
[43, 33],
[81, FAKE_NULL_REVISION],
[82, FAKE_NULL_REVISION],
[83, FAKE_NULL_REVISION],
[84, 45],
[85, FAKE_NULL_REVISION],
[86, FAKE_NULL_REVISION],
[FAKE_NULL_REVISION, FAKE_NULL_REVISION],
[88, FAKE_NULL_REVISION],
[FAKE_NULL_REVISION, FAKE_NULL_REVISION],
[76, 83],
[44, FAKE_NULL_REVISION],
[92, FAKE_NULL_REVISION],
[93, FAKE_NULL_REVISION],
[9, FAKE_NULL_REVISION],
[95, 67],
[96, FAKE_NULL_REVISION],
[97, FAKE_NULL_REVISION],
[FAKE_NULL_REVISION, FAKE_NULL_REVISION],
]
.into_iter()
.map(|[a, b]| [Revision(a), Revision(b)])
.collect();
let problem_rev = 28.into();
let problem_base = 70.into();
// making the problem obvious: problem_rev is a parent of problem_base
assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev);
let mut missing_ancestors: MissingAncestors<VecGraph> =
MissingAncestors::new(
graph,
[60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6]
.iter()
.map(|r| Revision(*r)),
);
assert!(missing_ancestors.bases.contains(&problem_base));
let mut revs: HashSet<Revision> =
[4, 12, 41, 28, 68, 38, 1, 30, 56, 44]
.iter()
.map(|r| Revision(*r))
.collect();
missing_ancestors.remove_ancestors_from(&mut revs).unwrap();
assert!(!revs.contains(&problem_rev));
}
}