##// END OF EJS Templates
rebase: do not invent successor to skipped changeset...
rebase: do not invent successor to skipped changeset When rebase results in an empty a changeset it is "skipped" and no related changeset is created at all. When we added obsolescence support to rebase (in fc2a6114f0a0) it seemed a good idea to use its parent successor as the successors for such dropped changesets. (see old version of the altered test). This option was chosen because it seems a good way to hint about were the dropped changeset "intended" to be. Such hint would have been used by automatic evolution mechanism to rebase potential unstable children. However, field testing of this version are not conclusive. It very often leads to the creation of (totally unfounded) evolution divergence. This changeset changes this behavior and mark skipped changesets as pruned (obsolete without successors). This prevents the issue and seems semantically better probably a win for obsolescence reading tool. See example bellow for details: User Babar has five changesets of interest: - O, its current base of development. - U, the new upstream - A and C, some development changesets - B another development changeset independent from A O - A - B - C \ U Babar decides that B is more critical than the A and C and rebase it first $ hg rebase --rev B --dest U B is now obsolete (in lower case bellow). Rebase result, B', is its successors.(note, C is unstable) O - A - b - C \ U - B' Babar is now done with B', and want to rebase the rest of its history: $ hg rebase --source A --dest B' hg rebase process A, B and C. B is skipped as all its changes are already contained in B'. O - U - B' - A' - C' Babar have the expected result graph wise, obsolescence marker are as follow: B -> B' (from first rebase) A -> A' (from second rebase) C -> C' (from second rebase) B -> ?? (from second rebase) Before this changeset, the last marker is `B -> A'`. This cause two issues: - This is semantically wrong. B have nothing to do with A' - B has now two successors sets: (B',) and (A',). We detect a divergent rewriting. The B' and A' are reported as "divergent" to Babar, confusion ensues. In addition such divergent situation (divergent changeset are children to each other) is tricky to solve. With this changeset the last marker is `B -> ΓΈ`: - This is semantically better. - B has a single successors set (B',) This scenario is added to the tests suite.

File last commit:

r18359:4b09e6f7 default
r18444:55aff0c2 default
Show More
commandserver.py
238 lines | 6.6 KiB | text/x-python | PythonLexer
# commandserver.py - communicate with Mercurial's API over a pipe
#
# Copyright Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from i18n import _
import struct
import sys, os
import dispatch, encoding, util
logfile = None
def log(*args):
if not logfile:
return
for a in args:
logfile.write(str(a))
logfile.flush()
class channeledoutput(object):
"""
Write data from in_ to out in the following format:
data length (unsigned int),
data
"""
def __init__(self, in_, out, channel):
self.in_ = in_
self.out = out
self.channel = channel
def write(self, data):
if not data:
return
self.out.write(struct.pack('>cI', self.channel, len(data)))
self.out.write(data)
self.out.flush()
def __getattr__(self, attr):
if attr in ('isatty', 'fileno'):
raise AttributeError(attr)
return getattr(self.in_, attr)
class channeledinput(object):
"""
Read data from in_.
Requests for input are written to out in the following format:
channel identifier - 'I' for plain input, 'L' line based (1 byte)
how many bytes to send at most (unsigned int),
The client replies with:
data length (unsigned int), 0 meaning EOF
data
"""
maxchunksize = 4 * 1024
def __init__(self, in_, out, channel):
self.in_ = in_
self.out = out
self.channel = channel
def read(self, size=-1):
if size < 0:
# if we need to consume all the clients input, ask for 4k chunks
# so the pipe doesn't fill up risking a deadlock
size = self.maxchunksize
s = self._read(size, self.channel)
buf = s
while s:
s = self._read(size, self.channel)
buf += s
return buf
else:
return self._read(size, self.channel)
def _read(self, size, channel):
if not size:
return ''
assert size > 0
# tell the client we need at most size bytes
self.out.write(struct.pack('>cI', channel, size))
self.out.flush()
length = self.in_.read(4)
length = struct.unpack('>I', length)[0]
if not length:
return ''
else:
return self.in_.read(length)
def readline(self, size=-1):
if size < 0:
size = self.maxchunksize
s = self._read(size, 'L')
buf = s
# keep asking for more until there's either no more or
# we got a full line
while s and s[-1] != '\n':
s = self._read(size, 'L')
buf += s
return buf
else:
return self._read(size, 'L')
def __iter__(self):
return self
def next(self):
l = self.readline()
if not l:
raise StopIteration
return l
def __getattr__(self, attr):
if attr in ('isatty', 'fileno'):
raise AttributeError(attr)
return getattr(self.in_, attr)
class server(object):
"""
Listens for commands on stdin, runs them and writes the output on a channel
based stream to stdout.
"""
def __init__(self, ui, repo, mode):
self.cwd = os.getcwd()
logpath = ui.config("cmdserver", "log", None)
if logpath:
global logfile
if logpath == '-':
# write log on a special 'd' (debug) channel
logfile = channeledoutput(sys.stdout, sys.stdout, 'd')
else:
logfile = open(logpath, 'a')
# the ui here is really the repo ui so take its baseui so we don't end
# up with its local configuration
self.ui = repo.baseui
self.repo = repo
self.repoui = repo.ui
if mode == 'pipe':
self.cerr = channeledoutput(sys.stderr, sys.stdout, 'e')
self.cout = channeledoutput(sys.stdout, sys.stdout, 'o')
self.cin = channeledinput(sys.stdin, sys.stdout, 'I')
self.cresult = channeledoutput(sys.stdout, sys.stdout, 'r')
self.client = sys.stdin
else:
raise util.Abort(_('unknown mode %s') % mode)
def _read(self, size):
if not size:
return ''
data = self.client.read(size)
# is the other end closed?
if not data:
raise EOFError
return data
def runcommand(self):
""" reads a list of \0 terminated arguments, executes
and writes the return code to the result channel """
length = struct.unpack('>I', self._read(4))[0]
if not length:
args = []
else:
args = self._read(length).split('\0')
# copy the uis so changes (e.g. --config or --verbose) don't
# persist between requests
copiedui = self.ui.copy()
self.repo.baseui = copiedui
self.repo.ui = self.repo.dirstate._ui = self.repoui.copy()
self.repo.invalidate()
self.repo.invalidatedirstate()
req = dispatch.request(args[:], copiedui, self.repo, self.cin,
self.cout, self.cerr)
ret = dispatch.dispatch(req) or 0 # might return None
# restore old cwd
if '--cwd' in args:
os.chdir(self.cwd)
self.cresult.write(struct.pack('>i', int(ret)))
def getencoding(self):
""" writes the current encoding to the result channel """
self.cresult.write(encoding.encoding)
def serveone(self):
cmd = self.client.readline()[:-1]
if cmd:
handler = self.capabilities.get(cmd)
if handler:
handler(self)
else:
# clients are expected to check what commands are supported by
# looking at the servers capabilities
raise util.Abort(_('unknown command %s') % cmd)
return cmd != ''
capabilities = {'runcommand' : runcommand,
'getencoding' : getencoding}
def serve(self):
hellomsg = 'capabilities: ' + ' '.join(sorted(self.capabilities))
hellomsg += '\n'
hellomsg += 'encoding: ' + encoding.encoding
# write the hello msg in -one- chunk
self.cout.write(hellomsg)
try:
while self.serveone():
pass
except EOFError:
# we'll get here if the client disconnected while we were reading
# its request
return 1
return 0