##// END OF EJS Templates
pyoxidizer: produce working Python 3 Windows installers (issue6366)...
pyoxidizer: produce working Python 3 Windows installers (issue6366) While we've had code to produce Python 3 Windows installers with PyOxidizer, we haven't been advertising them on the web site due to a bug in making TLS connections and issues around resource handling. This commit upgrades our PyOxidizer install and configuration to use a recent Git commit of PyOxidizer. This new version of PyOxidizer contains a *ton* of changes, improvements, and bug fixes. Notably, Windows shared distributions now mostly "just work" and the TLS bug and random problems with Python extension modules in the standard library go away. And Python has been upgraded from 3.7 to 3.8.6. The price we pay for this upgrade is a ton of backwards incompatible changes to Starlark. I applied this commit (the overall series actually) on stable to produce Windows installers for Mercurial 5.5.2, which I published shortly before submitting this commit for review. In order to get the stable branch working, I decided to take a less aggressive approach to Python resource management. Previously, we were attempting to load all Python modules from memory and were performing some hacks to copy Mercurial's non-module resources into additional directories in Starlark. This commit implements a resource callback function in Starlark (a new feature since PyOxidizer 0.7) to dynamically assign standard library resources to in-memory loading and all other resources to filesystem loading. This means that Mercurial's files and all the other packages we ship in the Windows installers (e.g. certifi and pygments) are loaded from the filesystem instead of from memory. This avoids issues due to lack of __file__ and enables us to ship a working Python 3 installer on Windows. The end state of the install layout after this patch is not ideal for @: we still copy resource files like templates and help text to directories next to the hg.exe executable. There is code in @ to use importlib.resources to load these files and we could likely remove these copies once this lands on @. But for now, the install layout mimics what we've shipped for seemingly forever and is backwards compatible. It allows us to achieve the milestone of working Python 3 Windows installers and gets us a giant step closer to deleting Python 2. Differential Revision: https://phab.mercurial-scm.org/D9148

File last commit:

r43347:687b865b default
r46277:57b5452a default
Show More
mpatch.py
136 lines | 3.3 KiB | text/x-python | PythonLexer
# mpatch.py - Python implementation of mpatch.c
#
# Copyright 2009 Matt Mackall <mpm@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import struct
from .. import pycompat
stringio = pycompat.bytesio
class mpatchError(Exception):
"""error raised when a delta cannot be decoded
"""
# This attempts to apply a series of patches in time proportional to
# the total size of the patches, rather than patches * len(text). This
# means rather than shuffling strings around, we shuffle around
# pointers to fragments with fragment lists.
#
# When the fragment lists get too long, we collapse them. To do this
# efficiently, we do all our operations inside a buffer created by
# mmap and simply use memmove. This avoids creating a bunch of large
# temporary string buffers.
def _pull(dst, src, l): # pull l bytes from src
while l:
f = src.pop()
if f[0] > l: # do we need to split?
src.append((f[0] - l, f[1] + l))
dst.append((l, f[1]))
return
dst.append(f)
l -= f[0]
def _move(m, dest, src, count):
"""move count bytes from src to dest
The file pointer is left at the end of dest.
"""
m.seek(src)
buf = m.read(count)
m.seek(dest)
m.write(buf)
def _collect(m, buf, list):
start = buf
for l, p in reversed(list):
_move(m, buf, p, l)
buf += l
return (buf - start, start)
def patches(a, bins):
if not bins:
return a
plens = [len(x) for x in bins]
pl = sum(plens)
bl = len(a) + pl
tl = bl + bl + pl # enough for the patches and two working texts
b1, b2 = 0, bl
if not tl:
return a
m = stringio()
# load our original text
m.write(a)
frags = [(len(a), b1)]
# copy all the patches into our segment so we can memmove from them
pos = b2 + bl
m.seek(pos)
for p in bins:
m.write(p)
for plen in plens:
# if our list gets too long, execute it
if len(frags) > 128:
b2, b1 = b1, b2
frags = [_collect(m, b1, frags)]
new = []
end = pos + plen
last = 0
while pos < end:
m.seek(pos)
try:
p1, p2, l = struct.unpack(b">lll", m.read(12))
except struct.error:
raise mpatchError(b"patch cannot be decoded")
_pull(new, frags, p1 - last) # what didn't change
_pull([], frags, p2 - p1) # what got deleted
new.append((l, pos + 12)) # what got added
pos += l + 12
last = p2
frags.extend(reversed(new)) # what was left at the end
t = _collect(m, b2, frags)
m.seek(t[1])
return m.read(t[0])
def patchedsize(orig, delta):
outlen, last, bin = 0, 0, 0
binend = len(delta)
data = 12
while data <= binend:
decode = delta[bin : bin + 12]
start, end, length = struct.unpack(b">lll", decode)
if start > end:
break
bin = data + length
data = bin + 12
outlen += start - last
last = end
outlen += length
if bin != binend:
raise mpatchError(b"patch cannot be decoded")
outlen += orig - last
return outlen