|
|
/*
|
|
|
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
|
|
* All rights reserved.
|
|
|
*
|
|
|
* This source code is licensed under both the BSD-style license (found in the
|
|
|
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
|
|
* in the COPYING file in the root directory of this source tree).
|
|
|
* You may select, at your option, one of the above-listed licenses.
|
|
|
*/
|
|
|
|
|
|
/* This header contains definitions
|
|
|
* that shall **only** be used by modules within lib/compress.
|
|
|
*/
|
|
|
|
|
|
#ifndef ZSTD_COMPRESS_H
|
|
|
#define ZSTD_COMPRESS_H
|
|
|
|
|
|
/*-*************************************
|
|
|
* Dependencies
|
|
|
***************************************/
|
|
|
#include "zstd_internal.h"
|
|
|
#ifdef ZSTD_MULTITHREAD
|
|
|
# include "zstdmt_compress.h"
|
|
|
#endif
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
|
extern "C" {
|
|
|
#endif
|
|
|
|
|
|
|
|
|
/*-*************************************
|
|
|
* Constants
|
|
|
***************************************/
|
|
|
#define kSearchStrength 8
|
|
|
#define HASH_READ_SIZE 8
|
|
|
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index 1 now means "unsorted".
|
|
|
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
|
|
|
It's not a big deal though : candidate will just be sorted again.
|
|
|
Additionnally, candidate position 1 will be lost.
|
|
|
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
|
|
|
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be misdhandled after table re-use with a different strategy
|
|
|
Constant required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
|
|
|
|
|
|
|
|
|
/*-*************************************
|
|
|
* Context memory management
|
|
|
***************************************/
|
|
|
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
|
|
|
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
|
|
|
|
|
|
typedef struct ZSTD_prefixDict_s {
|
|
|
const void* dict;
|
|
|
size_t dictSize;
|
|
|
ZSTD_dictContentType_e dictContentType;
|
|
|
} ZSTD_prefixDict;
|
|
|
|
|
|
typedef struct {
|
|
|
U32 CTable[HUF_CTABLE_SIZE_U32(255)];
|
|
|
HUF_repeat repeatMode;
|
|
|
} ZSTD_hufCTables_t;
|
|
|
|
|
|
typedef struct {
|
|
|
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
|
|
|
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
|
|
|
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
|
|
|
FSE_repeat offcode_repeatMode;
|
|
|
FSE_repeat matchlength_repeatMode;
|
|
|
FSE_repeat litlength_repeatMode;
|
|
|
} ZSTD_fseCTables_t;
|
|
|
|
|
|
typedef struct {
|
|
|
ZSTD_hufCTables_t huf;
|
|
|
ZSTD_fseCTables_t fse;
|
|
|
} ZSTD_entropyCTables_t;
|
|
|
|
|
|
typedef struct {
|
|
|
U32 off;
|
|
|
U32 len;
|
|
|
} ZSTD_match_t;
|
|
|
|
|
|
typedef struct {
|
|
|
int price;
|
|
|
U32 off;
|
|
|
U32 mlen;
|
|
|
U32 litlen;
|
|
|
U32 rep[ZSTD_REP_NUM];
|
|
|
} ZSTD_optimal_t;
|
|
|
|
|
|
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
|
|
|
|
|
|
typedef struct {
|
|
|
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
|
|
|
unsigned* litFreq; /* table of literals statistics, of size 256 */
|
|
|
unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
|
|
|
unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
|
|
|
unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
|
|
|
ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
|
|
|
ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
|
|
|
|
|
|
U32 litSum; /* nb of literals */
|
|
|
U32 litLengthSum; /* nb of litLength codes */
|
|
|
U32 matchLengthSum; /* nb of matchLength codes */
|
|
|
U32 offCodeSum; /* nb of offset codes */
|
|
|
U32 litSumBasePrice; /* to compare to log2(litfreq) */
|
|
|
U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
|
|
|
U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
|
|
|
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
|
|
|
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
|
|
|
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
|
|
|
} optState_t;
|
|
|
|
|
|
typedef struct {
|
|
|
ZSTD_entropyCTables_t entropy;
|
|
|
U32 rep[ZSTD_REP_NUM];
|
|
|
} ZSTD_compressedBlockState_t;
|
|
|
|
|
|
typedef struct {
|
|
|
BYTE const* nextSrc; /* next block here to continue on current prefix */
|
|
|
BYTE const* base; /* All regular indexes relative to this position */
|
|
|
BYTE const* dictBase; /* extDict indexes relative to this position */
|
|
|
U32 dictLimit; /* below that point, need extDict */
|
|
|
U32 lowLimit; /* below that point, no more data */
|
|
|
} ZSTD_window_t;
|
|
|
|
|
|
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
|
|
|
struct ZSTD_matchState_t {
|
|
|
ZSTD_window_t window; /* State for window round buffer management */
|
|
|
U32 loadedDictEnd; /* index of end of dictionary */
|
|
|
U32 nextToUpdate; /* index from which to continue table update */
|
|
|
U32 nextToUpdate3; /* index from which to continue table update */
|
|
|
U32 hashLog3; /* dispatch table : larger == faster, more memory */
|
|
|
U32* hashTable;
|
|
|
U32* hashTable3;
|
|
|
U32* chainTable;
|
|
|
optState_t opt; /* optimal parser state */
|
|
|
const ZSTD_matchState_t * dictMatchState;
|
|
|
ZSTD_compressionParameters cParams;
|
|
|
};
|
|
|
|
|
|
typedef struct {
|
|
|
ZSTD_compressedBlockState_t* prevCBlock;
|
|
|
ZSTD_compressedBlockState_t* nextCBlock;
|
|
|
ZSTD_matchState_t matchState;
|
|
|
} ZSTD_blockState_t;
|
|
|
|
|
|
typedef struct {
|
|
|
U32 offset;
|
|
|
U32 checksum;
|
|
|
} ldmEntry_t;
|
|
|
|
|
|
typedef struct {
|
|
|
ZSTD_window_t window; /* State for the window round buffer management */
|
|
|
ldmEntry_t* hashTable;
|
|
|
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
|
|
|
U64 hashPower; /* Used to compute the rolling hash.
|
|
|
* Depends on ldmParams.minMatchLength */
|
|
|
} ldmState_t;
|
|
|
|
|
|
typedef struct {
|
|
|
U32 enableLdm; /* 1 if enable long distance matching */
|
|
|
U32 hashLog; /* Log size of hashTable */
|
|
|
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
|
|
|
U32 minMatchLength; /* Minimum match length */
|
|
|
U32 hashRateLog; /* Log number of entries to skip */
|
|
|
U32 windowLog; /* Window log for the LDM */
|
|
|
} ldmParams_t;
|
|
|
|
|
|
typedef struct {
|
|
|
U32 offset;
|
|
|
U32 litLength;
|
|
|
U32 matchLength;
|
|
|
} rawSeq;
|
|
|
|
|
|
typedef struct {
|
|
|
rawSeq* seq; /* The start of the sequences */
|
|
|
size_t pos; /* The position where reading stopped. <= size. */
|
|
|
size_t size; /* The number of sequences. <= capacity. */
|
|
|
size_t capacity; /* The capacity starting from `seq` pointer */
|
|
|
} rawSeqStore_t;
|
|
|
|
|
|
struct ZSTD_CCtx_params_s {
|
|
|
ZSTD_format_e format;
|
|
|
ZSTD_compressionParameters cParams;
|
|
|
ZSTD_frameParameters fParams;
|
|
|
|
|
|
int compressionLevel;
|
|
|
int forceWindow; /* force back-references to respect limit of
|
|
|
* 1<<wLog, even for dictionary */
|
|
|
|
|
|
ZSTD_dictAttachPref_e attachDictPref;
|
|
|
|
|
|
/* Multithreading: used to pass parameters to mtctx */
|
|
|
int nbWorkers;
|
|
|
size_t jobSize;
|
|
|
int overlapLog;
|
|
|
int rsyncable;
|
|
|
|
|
|
/* Long distance matching parameters */
|
|
|
ldmParams_t ldmParams;
|
|
|
|
|
|
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
|
|
|
ZSTD_customMem customMem;
|
|
|
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
|
|
|
|
|
|
struct ZSTD_CCtx_s {
|
|
|
ZSTD_compressionStage_e stage;
|
|
|
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
|
|
|
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
|
|
|
ZSTD_CCtx_params requestedParams;
|
|
|
ZSTD_CCtx_params appliedParams;
|
|
|
U32 dictID;
|
|
|
|
|
|
int workSpaceOversizedDuration;
|
|
|
void* workSpace;
|
|
|
size_t workSpaceSize;
|
|
|
size_t blockSize;
|
|
|
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
|
|
|
unsigned long long consumedSrcSize;
|
|
|
unsigned long long producedCSize;
|
|
|
XXH64_state_t xxhState;
|
|
|
ZSTD_customMem customMem;
|
|
|
size_t staticSize;
|
|
|
|
|
|
seqStore_t seqStore; /* sequences storage ptrs */
|
|
|
ldmState_t ldmState; /* long distance matching state */
|
|
|
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
|
|
|
size_t maxNbLdmSequences;
|
|
|
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
|
|
|
ZSTD_blockState_t blockState;
|
|
|
U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
|
|
|
|
|
|
/* streaming */
|
|
|
char* inBuff;
|
|
|
size_t inBuffSize;
|
|
|
size_t inToCompress;
|
|
|
size_t inBuffPos;
|
|
|
size_t inBuffTarget;
|
|
|
char* outBuff;
|
|
|
size_t outBuffSize;
|
|
|
size_t outBuffContentSize;
|
|
|
size_t outBuffFlushedSize;
|
|
|
ZSTD_cStreamStage streamStage;
|
|
|
U32 frameEnded;
|
|
|
|
|
|
/* Dictionary */
|
|
|
ZSTD_CDict* cdictLocal;
|
|
|
const ZSTD_CDict* cdict;
|
|
|
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
|
|
|
|
|
|
/* Multi-threading */
|
|
|
#ifdef ZSTD_MULTITHREAD
|
|
|
ZSTDMT_CCtx* mtctx;
|
|
|
#endif
|
|
|
};
|
|
|
|
|
|
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
|
|
|
|
|
|
typedef enum { ZSTD_noDict = 0, ZSTD_extDict = 1, ZSTD_dictMatchState = 2 } ZSTD_dictMode_e;
|
|
|
|
|
|
|
|
|
typedef size_t (*ZSTD_blockCompressor) (
|
|
|
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
|
|
void const* src, size_t srcSize);
|
|
|
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode);
|
|
|
|
|
|
|
|
|
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
|
|
|
{
|
|
|
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
|
|
|
8, 9, 10, 11, 12, 13, 14, 15,
|
|
|
16, 16, 17, 17, 18, 18, 19, 19,
|
|
|
20, 20, 20, 20, 21, 21, 21, 21,
|
|
|
22, 22, 22, 22, 22, 22, 22, 22,
|
|
|
23, 23, 23, 23, 23, 23, 23, 23,
|
|
|
24, 24, 24, 24, 24, 24, 24, 24,
|
|
|
24, 24, 24, 24, 24, 24, 24, 24 };
|
|
|
static const U32 LL_deltaCode = 19;
|
|
|
return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
|
|
|
}
|
|
|
|
|
|
/* ZSTD_MLcode() :
|
|
|
* note : mlBase = matchLength - MINMATCH;
|
|
|
* because it's the format it's stored in seqStore->sequences */
|
|
|
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
|
|
|
{
|
|
|
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
|
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
|
|
|
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
|
|
|
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
|
|
|
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
|
|
|
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
|
|
|
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
|
|
|
static const U32 ML_deltaCode = 36;
|
|
|
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
|
|
|
}
|
|
|
|
|
|
/*! ZSTD_storeSeq() :
|
|
|
* Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
|
|
|
* `offsetCode` : distance to match + 3 (values 1-3 are repCodes).
|
|
|
* `mlBase` : matchLength - MINMATCH
|
|
|
*/
|
|
|
MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t mlBase)
|
|
|
{
|
|
|
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
|
|
|
static const BYTE* g_start = NULL;
|
|
|
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
|
|
|
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
|
|
|
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
|
|
|
pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offsetCode);
|
|
|
}
|
|
|
#endif
|
|
|
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
|
|
|
/* copy Literals */
|
|
|
assert(seqStorePtr->maxNbLit <= 128 KB);
|
|
|
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
|
|
|
ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
|
|
|
seqStorePtr->lit += litLength;
|
|
|
|
|
|
/* literal Length */
|
|
|
if (litLength>0xFFFF) {
|
|
|
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
|
|
|
seqStorePtr->longLengthID = 1;
|
|
|
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
|
|
|
}
|
|
|
seqStorePtr->sequences[0].litLength = (U16)litLength;
|
|
|
|
|
|
/* match offset */
|
|
|
seqStorePtr->sequences[0].offset = offsetCode + 1;
|
|
|
|
|
|
/* match Length */
|
|
|
if (mlBase>0xFFFF) {
|
|
|
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
|
|
|
seqStorePtr->longLengthID = 2;
|
|
|
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
|
|
|
}
|
|
|
seqStorePtr->sequences[0].matchLength = (U16)mlBase;
|
|
|
|
|
|
seqStorePtr->sequences++;
|
|
|
}
|
|
|
|
|
|
|
|
|
/*-*************************************
|
|
|
* Match length counter
|
|
|
***************************************/
|
|
|
static unsigned ZSTD_NbCommonBytes (size_t val)
|
|
|
{
|
|
|
if (MEM_isLittleEndian()) {
|
|
|
if (MEM_64bits()) {
|
|
|
# if defined(_MSC_VER) && defined(_WIN64)
|
|
|
unsigned long r = 0;
|
|
|
_BitScanForward64( &r, (U64)val );
|
|
|
return (unsigned)(r>>3);
|
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
|
|
return (__builtin_ctzll((U64)val) >> 3);
|
|
|
# else
|
|
|
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
|
|
|
0, 3, 1, 3, 1, 4, 2, 7,
|
|
|
0, 2, 3, 6, 1, 5, 3, 5,
|
|
|
1, 3, 4, 4, 2, 5, 6, 7,
|
|
|
7, 0, 1, 2, 3, 3, 4, 6,
|
|
|
2, 6, 5, 5, 3, 4, 5, 6,
|
|
|
7, 1, 2, 4, 6, 4, 4, 5,
|
|
|
7, 2, 6, 5, 7, 6, 7, 7 };
|
|
|
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
|
|
|
# endif
|
|
|
} else { /* 32 bits */
|
|
|
# if defined(_MSC_VER)
|
|
|
unsigned long r=0;
|
|
|
_BitScanForward( &r, (U32)val );
|
|
|
return (unsigned)(r>>3);
|
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
|
|
return (__builtin_ctz((U32)val) >> 3);
|
|
|
# else
|
|
|
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
|
|
|
3, 2, 2, 1, 3, 2, 0, 1,
|
|
|
3, 3, 1, 2, 2, 2, 2, 0,
|
|
|
3, 1, 2, 0, 1, 0, 1, 1 };
|
|
|
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
|
|
|
# endif
|
|
|
}
|
|
|
} else { /* Big Endian CPU */
|
|
|
if (MEM_64bits()) {
|
|
|
# if defined(_MSC_VER) && defined(_WIN64)
|
|
|
unsigned long r = 0;
|
|
|
_BitScanReverse64( &r, val );
|
|
|
return (unsigned)(r>>3);
|
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
|
|
return (__builtin_clzll(val) >> 3);
|
|
|
# else
|
|
|
unsigned r;
|
|
|
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
|
|
|
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
|
|
|
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
|
|
|
r += (!val);
|
|
|
return r;
|
|
|
# endif
|
|
|
} else { /* 32 bits */
|
|
|
# if defined(_MSC_VER)
|
|
|
unsigned long r = 0;
|
|
|
_BitScanReverse( &r, (unsigned long)val );
|
|
|
return (unsigned)(r>>3);
|
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
|
|
return (__builtin_clz((U32)val) >> 3);
|
|
|
# else
|
|
|
unsigned r;
|
|
|
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
|
|
|
r += (!val);
|
|
|
return r;
|
|
|
# endif
|
|
|
} }
|
|
|
}
|
|
|
|
|
|
|
|
|
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
|
|
|
{
|
|
|
const BYTE* const pStart = pIn;
|
|
|
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
|
|
|
|
|
|
if (pIn < pInLoopLimit) {
|
|
|
{ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
|
|
|
if (diff) return ZSTD_NbCommonBytes(diff); }
|
|
|
pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
|
|
|
while (pIn < pInLoopLimit) {
|
|
|
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
|
|
|
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
|
|
|
pIn += ZSTD_NbCommonBytes(diff);
|
|
|
return (size_t)(pIn - pStart);
|
|
|
} }
|
|
|
if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
|
|
|
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
|
|
|
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
|
|
|
return (size_t)(pIn - pStart);
|
|
|
}
|
|
|
|
|
|
/** ZSTD_count_2segments() :
|
|
|
* can count match length with `ip` & `match` in 2 different segments.
|
|
|
* convention : on reaching mEnd, match count continue starting from iStart
|
|
|
*/
|
|
|
MEM_STATIC size_t
|
|
|
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
|
|
|
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
|
|
|
{
|
|
|
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
|
|
|
size_t const matchLength = ZSTD_count(ip, match, vEnd);
|
|
|
if (match + matchLength != mEnd) return matchLength;
|
|
|
DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
|
|
|
DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
|
|
|
DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
|
|
|
DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
|
|
|
DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
|
|
|
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
|
|
|
}
|
|
|
|
|
|
|
|
|
/*-*************************************
|
|
|
* Hashes
|
|
|
***************************************/
|
|
|
static const U32 prime3bytes = 506832829U;
|
|
|
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
|
|
|
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
|
|
|
|
|
|
static const U32 prime4bytes = 2654435761U;
|
|
|
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
|
|
|
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
|
|
|
|
|
|
static const U64 prime5bytes = 889523592379ULL;
|
|
|
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
|
|
|
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
|
|
|
|
|
|
static const U64 prime6bytes = 227718039650203ULL;
|
|
|
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
|
|
|
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
|
|
|
|
|
|
static const U64 prime7bytes = 58295818150454627ULL;
|
|
|
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
|
|
|
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
|
|
|
|
|
|
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
|
|
|
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
|
|
|
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
|
|
|
|
|
|
MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
|
|
|
{
|
|
|
switch(mls)
|
|
|
{
|
|
|
default:
|
|
|
case 4: return ZSTD_hash4Ptr(p, hBits);
|
|
|
case 5: return ZSTD_hash5Ptr(p, hBits);
|
|
|
case 6: return ZSTD_hash6Ptr(p, hBits);
|
|
|
case 7: return ZSTD_hash7Ptr(p, hBits);
|
|
|
case 8: return ZSTD_hash8Ptr(p, hBits);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/** ZSTD_ipow() :
|
|
|
* Return base^exponent.
|
|
|
*/
|
|
|
static U64 ZSTD_ipow(U64 base, U64 exponent)
|
|
|
{
|
|
|
U64 power = 1;
|
|
|
while (exponent) {
|
|
|
if (exponent & 1) power *= base;
|
|
|
exponent >>= 1;
|
|
|
base *= base;
|
|
|
}
|
|
|
return power;
|
|
|
}
|
|
|
|
|
|
#define ZSTD_ROLL_HASH_CHAR_OFFSET 10
|
|
|
|
|
|
/** ZSTD_rollingHash_append() :
|
|
|
* Add the buffer to the hash value.
|
|
|
*/
|
|
|
static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
|
|
|
{
|
|
|
BYTE const* istart = (BYTE const*)buf;
|
|
|
size_t pos;
|
|
|
for (pos = 0; pos < size; ++pos) {
|
|
|
hash *= prime8bytes;
|
|
|
hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
|
|
|
}
|
|
|
return hash;
|
|
|
}
|
|
|
|
|
|
/** ZSTD_rollingHash_compute() :
|
|
|
* Compute the rolling hash value of the buffer.
|
|
|
*/
|
|
|
MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
|
|
|
{
|
|
|
return ZSTD_rollingHash_append(0, buf, size);
|
|
|
}
|
|
|
|
|
|
/** ZSTD_rollingHash_primePower() :
|
|
|
* Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
|
|
|
* over a window of length bytes.
|
|
|
*/
|
|
|
MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
|
|
|
{
|
|
|
return ZSTD_ipow(prime8bytes, length - 1);
|
|
|
}
|
|
|
|
|
|
/** ZSTD_rollingHash_rotate() :
|
|
|
* Rotate the rolling hash by one byte.
|
|
|
*/
|
|
|
MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
|
|
|
{
|
|
|
hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
|
|
|
hash *= prime8bytes;
|
|
|
hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
|
|
|
return hash;
|
|
|
}
|
|
|
|
|
|
/*-*************************************
|
|
|
* Round buffer management
|
|
|
***************************************/
|
|
|
/* Max current allowed */
|
|
|
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
|
|
|
/* Maximum chunk size before overflow correction needs to be called again */
|
|
|
#define ZSTD_CHUNKSIZE_MAX \
|
|
|
( ((U32)-1) /* Maximum ending current index */ \
|
|
|
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
|
|
|
|
|
|
/**
|
|
|
* ZSTD_window_clear():
|
|
|
* Clears the window containing the history by simply setting it to empty.
|
|
|
*/
|
|
|
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
|
|
|
{
|
|
|
size_t const endT = (size_t)(window->nextSrc - window->base);
|
|
|
U32 const end = (U32)endT;
|
|
|
|
|
|
window->lowLimit = end;
|
|
|
window->dictLimit = end;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* ZSTD_window_hasExtDict():
|
|
|
* Returns non-zero if the window has a non-empty extDict.
|
|
|
*/
|
|
|
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
|
|
|
{
|
|
|
return window.lowLimit < window.dictLimit;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* ZSTD_matchState_dictMode():
|
|
|
* Inspects the provided matchState and figures out what dictMode should be
|
|
|
* passed to the compressor.
|
|
|
*/
|
|
|
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
|
|
|
{
|
|
|
return ZSTD_window_hasExtDict(ms->window) ?
|
|
|
ZSTD_extDict :
|
|
|
ms->dictMatchState != NULL ?
|
|
|
ZSTD_dictMatchState :
|
|
|
ZSTD_noDict;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* ZSTD_window_needOverflowCorrection():
|
|
|
* Returns non-zero if the indices are getting too large and need overflow
|
|
|
* protection.
|
|
|
*/
|
|
|
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
|
|
|
void const* srcEnd)
|
|
|
{
|
|
|
U32 const current = (U32)((BYTE const*)srcEnd - window.base);
|
|
|
return current > ZSTD_CURRENT_MAX;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* ZSTD_window_correctOverflow():
|
|
|
* Reduces the indices to protect from index overflow.
|
|
|
* Returns the correction made to the indices, which must be applied to every
|
|
|
* stored index.
|
|
|
*
|
|
|
* The least significant cycleLog bits of the indices must remain the same,
|
|
|
* which may be 0. Every index up to maxDist in the past must be valid.
|
|
|
* NOTE: (maxDist & cycleMask) must be zero.
|
|
|
*/
|
|
|
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
|
|
|
U32 maxDist, void const* src)
|
|
|
{
|
|
|
/* preemptive overflow correction:
|
|
|
* 1. correction is large enough:
|
|
|
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
|
|
|
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
|
|
|
*
|
|
|
* current - newCurrent
|
|
|
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
|
|
|
* > (3<<29) - (1<<chainLog)
|
|
|
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
|
|
|
* > 1<<29
|
|
|
*
|
|
|
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
|
|
|
* After correction, current is less than (1<<chainLog + 1<<windowLog).
|
|
|
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
|
|
|
* In 32-bit mode we are safe, because (chainLog <= 29), so
|
|
|
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
|
|
|
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
|
|
|
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
|
|
|
*/
|
|
|
U32 const cycleMask = (1U << cycleLog) - 1;
|
|
|
U32 const current = (U32)((BYTE const*)src - window->base);
|
|
|
U32 const newCurrent = (current & cycleMask) + maxDist;
|
|
|
U32 const correction = current - newCurrent;
|
|
|
assert((maxDist & cycleMask) == 0);
|
|
|
assert(current > newCurrent);
|
|
|
/* Loose bound, should be around 1<<29 (see above) */
|
|
|
assert(correction > 1<<28);
|
|
|
|
|
|
window->base += correction;
|
|
|
window->dictBase += correction;
|
|
|
window->lowLimit -= correction;
|
|
|
window->dictLimit -= correction;
|
|
|
|
|
|
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
|
|
|
window->lowLimit);
|
|
|
return correction;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* ZSTD_window_enforceMaxDist():
|
|
|
* Updates lowLimit so that:
|
|
|
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
|
|
|
*
|
|
|
* This allows a simple check that index >= lowLimit to see if index is valid.
|
|
|
* This must be called before a block compression call, with srcEnd as the block
|
|
|
* source end.
|
|
|
*
|
|
|
* If loadedDictEndPtr is not NULL, we set it to zero once we update lowLimit.
|
|
|
* This is because dictionaries are allowed to be referenced as long as the last
|
|
|
* byte of the dictionary is in the window, but once they are out of range,
|
|
|
* they cannot be referenced. If loadedDictEndPtr is NULL, we use
|
|
|
* loadedDictEnd == 0.
|
|
|
*
|
|
|
* In normal dict mode, the dict is between lowLimit and dictLimit. In
|
|
|
* dictMatchState mode, lowLimit and dictLimit are the same, and the dictionary
|
|
|
* is below them. forceWindow and dictMatchState are therefore incompatible.
|
|
|
*/
|
|
|
MEM_STATIC void
|
|
|
ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
|
|
|
void const* srcEnd,
|
|
|
U32 maxDist,
|
|
|
U32* loadedDictEndPtr,
|
|
|
const ZSTD_matchState_t** dictMatchStatePtr)
|
|
|
{
|
|
|
U32 const blockEndIdx = (U32)((BYTE const*)srcEnd - window->base);
|
|
|
U32 loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
|
|
|
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u",
|
|
|
(unsigned)blockEndIdx, (unsigned)maxDist);
|
|
|
if (blockEndIdx > maxDist + loadedDictEnd) {
|
|
|
U32 const newLowLimit = blockEndIdx - maxDist;
|
|
|
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
|
|
|
if (window->dictLimit < window->lowLimit) {
|
|
|
DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
|
|
|
(unsigned)window->dictLimit, (unsigned)window->lowLimit);
|
|
|
window->dictLimit = window->lowLimit;
|
|
|
}
|
|
|
if (loadedDictEndPtr)
|
|
|
*loadedDictEndPtr = 0;
|
|
|
if (dictMatchStatePtr)
|
|
|
*dictMatchStatePtr = NULL;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* ZSTD_window_update():
|
|
|
* Updates the window by appending [src, src + srcSize) to the window.
|
|
|
* If it is not contiguous, the current prefix becomes the extDict, and we
|
|
|
* forget about the extDict. Handles overlap of the prefix and extDict.
|
|
|
* Returns non-zero if the segment is contiguous.
|
|
|
*/
|
|
|
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
|
|
|
void const* src, size_t srcSize)
|
|
|
{
|
|
|
BYTE const* const ip = (BYTE const*)src;
|
|
|
U32 contiguous = 1;
|
|
|
DEBUGLOG(5, "ZSTD_window_update");
|
|
|
/* Check if blocks follow each other */
|
|
|
if (src != window->nextSrc) {
|
|
|
/* not contiguous */
|
|
|
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
|
|
|
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
|
|
|
window->lowLimit = window->dictLimit;
|
|
|
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
|
|
|
window->dictLimit = (U32)distanceFromBase;
|
|
|
window->dictBase = window->base;
|
|
|
window->base = ip - distanceFromBase;
|
|
|
// ms->nextToUpdate = window->dictLimit;
|
|
|
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
|
|
|
contiguous = 0;
|
|
|
}
|
|
|
window->nextSrc = ip + srcSize;
|
|
|
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
|
|
|
if ( (ip+srcSize > window->dictBase + window->lowLimit)
|
|
|
& (ip < window->dictBase + window->dictLimit)) {
|
|
|
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
|
|
|
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
|
|
|
window->lowLimit = lowLimitMax;
|
|
|
DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
|
|
|
}
|
|
|
return contiguous;
|
|
|
}
|
|
|
|
|
|
|
|
|
/* debug functions */
|
|
|
#if (DEBUGLEVEL>=2)
|
|
|
|
|
|
MEM_STATIC double ZSTD_fWeight(U32 rawStat)
|
|
|
{
|
|
|
U32 const fp_accuracy = 8;
|
|
|
U32 const fp_multiplier = (1 << fp_accuracy);
|
|
|
U32 const newStat = rawStat + 1;
|
|
|
U32 const hb = ZSTD_highbit32(newStat);
|
|
|
U32 const BWeight = hb * fp_multiplier;
|
|
|
U32 const FWeight = (newStat << fp_accuracy) >> hb;
|
|
|
U32 const weight = BWeight + FWeight;
|
|
|
assert(hb + fp_accuracy < 31);
|
|
|
return (double)weight / fp_multiplier;
|
|
|
}
|
|
|
|
|
|
/* display a table content,
|
|
|
* listing each element, its frequency, and its predicted bit cost */
|
|
|
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
|
|
|
{
|
|
|
unsigned u, sum;
|
|
|
for (u=0, sum=0; u<=max; u++) sum += table[u];
|
|
|
DEBUGLOG(2, "total nb elts: %u", sum);
|
|
|
for (u=0; u<=max; u++) {
|
|
|
DEBUGLOG(2, "%2u: %5u (%.2f)",
|
|
|
u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
|
|
|
/* ==============================================================
|
|
|
* Private declarations
|
|
|
* These prototypes shall only be called from within lib/compress
|
|
|
* ============================================================== */
|
|
|
|
|
|
/* ZSTD_getCParamsFromCCtxParams() :
|
|
|
* cParams are built depending on compressionLevel, src size hints,
|
|
|
* LDM and manually set compression parameters.
|
|
|
*/
|
|
|
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
|
|
|
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize);
|
|
|
|
|
|
/*! ZSTD_initCStream_internal() :
|
|
|
* Private use only. Init streaming operation.
|
|
|
* expects params to be valid.
|
|
|
* must receive dict, or cdict, or none, but not both.
|
|
|
* @return : 0, or an error code */
|
|
|
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
|
|
|
const void* dict, size_t dictSize,
|
|
|
const ZSTD_CDict* cdict,
|
|
|
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
|
|
|
|
|
|
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
|
|
|
|
|
|
/*! ZSTD_compressStream_generic() :
|
|
|
* Private use only. To be called from zstdmt_compress.c in single-thread mode. */
|
|
|
size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
|
|
|
ZSTD_outBuffer* output,
|
|
|
ZSTD_inBuffer* input,
|
|
|
ZSTD_EndDirective const flushMode);
|
|
|
|
|
|
/*! ZSTD_getCParamsFromCDict() :
|
|
|
* as the name implies */
|
|
|
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
|
|
|
|
|
|
/* ZSTD_compressBegin_advanced_internal() :
|
|
|
* Private use only. To be called from zstdmt_compress.c. */
|
|
|
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
|
|
|
const void* dict, size_t dictSize,
|
|
|
ZSTD_dictContentType_e dictContentType,
|
|
|
ZSTD_dictTableLoadMethod_e dtlm,
|
|
|
const ZSTD_CDict* cdict,
|
|
|
ZSTD_CCtx_params params,
|
|
|
unsigned long long pledgedSrcSize);
|
|
|
|
|
|
/* ZSTD_compress_advanced_internal() :
|
|
|
* Private use only. To be called from zstdmt_compress.c. */
|
|
|
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
|
|
|
void* dst, size_t dstCapacity,
|
|
|
const void* src, size_t srcSize,
|
|
|
const void* dict,size_t dictSize,
|
|
|
ZSTD_CCtx_params params);
|
|
|
|
|
|
|
|
|
/* ZSTD_writeLastEmptyBlock() :
|
|
|
* output an empty Block with end-of-frame mark to complete a frame
|
|
|
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
|
|
|
* or an error code if `dstCapcity` is too small (<ZSTD_blockHeaderSize)
|
|
|
*/
|
|
|
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
|
|
|
|
|
|
|
|
|
/* ZSTD_referenceExternalSequences() :
|
|
|
* Must be called before starting a compression operation.
|
|
|
* seqs must parse a prefix of the source.
|
|
|
* This cannot be used when long range matching is enabled.
|
|
|
* Zstd will use these sequences, and pass the literals to a secondary block
|
|
|
* compressor.
|
|
|
* @return : An error code on failure.
|
|
|
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
|
|
|
* access and data corruption.
|
|
|
*/
|
|
|
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
|
|
|
|
|
|
|
|
|
#endif /* ZSTD_COMPRESS_H */
|
|
|
|