##// END OF EJS Templates
setdiscovery: don't call "heads" wire command when heads specified...
setdiscovery: don't call "heads" wire command when heads specified Our custom server has too many heads to announce (one per code review, plus a public head), but it still lets the user request one of them by doing hg pull -r <some expression> After the client has resolved the expression to a set of nodeids by calling the "lookup" wire command, it will start the discovery phase. Before this patch, that doesn't take the requested heads into account and unconditionally calls the server's "heads" command to find all its heads. One consequence of that the "all remote heads known locally" case triggers if the client already had the public head and the user will see a "no changes found" message that's unrelated to the head they requested. That message confused me for a while. More imporantly, it also means that pullop.cgresult incorrectly (given our arguably misbehaving server) gets set to 0 (no changesets added), which confused some of our extensions. This patch makes it so the client skips the "heads" command if the user requested specific revisions. Since the "heads" command is normally batched with the first "known" command and calculating the list of heads is probably cheap, I don't expect much improvement in speed from this. Differential Revision: https://phab.mercurial-scm.org/D1962

File last commit:

r35310:d1352633 default
r35867:5cfdf613 default
Show More
revlog.c
2084 lines | 46.8 KiB | text/x-c | CLexer
/*
parsers.c - efficient content parsing
Copyright 2008 Matt Mackall <mpm@selenic.com> and others
This software may be used and distributed according to the terms of
the GNU General Public License, incorporated herein by reference.
*/
#include <Python.h>
#include <assert.h>
#include <ctype.h>
#include <stddef.h>
#include <string.h>
#include "bitmanipulation.h"
#include "charencode.h"
#include "util.h"
#ifdef IS_PY3K
/* The mapping of Python types is meant to be temporary to get Python
* 3 to compile. We should remove this once Python 3 support is fully
* supported and proper types are used in the extensions themselves. */
#define PyInt_Check PyLong_Check
#define PyInt_FromLong PyLong_FromLong
#define PyInt_FromSsize_t PyLong_FromSsize_t
#define PyInt_AS_LONG PyLong_AS_LONG
#define PyInt_AsLong PyLong_AsLong
#endif
/*
* A base-16 trie for fast node->rev mapping.
*
* Positive value is index of the next node in the trie
* Negative value is a leaf: -(rev + 1)
* Zero is empty
*/
typedef struct {
int children[16];
} nodetree;
/*
* This class has two behaviors.
*
* When used in a list-like way (with integer keys), we decode an
* entry in a RevlogNG index file on demand. Our last entry is a
* sentinel, always a nullid. We have limited support for
* integer-keyed insert and delete, only at elements right before the
* sentinel.
*
* With string keys, we lazily perform a reverse mapping from node to
* rev, using a base-16 trie.
*/
typedef struct {
PyObject_HEAD
/* Type-specific fields go here. */
PyObject *data; /* raw bytes of index */
Py_buffer buf; /* buffer of data */
PyObject **cache; /* cached tuples */
const char **offsets; /* populated on demand */
Py_ssize_t raw_length; /* original number of elements */
Py_ssize_t length; /* current number of elements */
PyObject *added; /* populated on demand */
PyObject *headrevs; /* cache, invalidated on changes */
PyObject *filteredrevs;/* filtered revs set */
nodetree *nt; /* base-16 trie */
unsigned ntlength; /* # nodes in use */
unsigned ntcapacity; /* # nodes allocated */
int ntdepth; /* maximum depth of tree */
int ntsplits; /* # splits performed */
int ntrev; /* last rev scanned */
int ntlookups; /* # lookups */
int ntmisses; /* # lookups that miss the cache */
int inlined;
} indexObject;
static Py_ssize_t index_length(const indexObject *self)
{
if (self->added == NULL)
return self->length;
return self->length + PyList_GET_SIZE(self->added);
}
static PyObject *nullentry;
static const char nullid[20];
static Py_ssize_t inline_scan(indexObject *self, const char **offsets);
#if LONG_MAX == 0x7fffffffL
static char *tuple_format = "Kiiiiiis#";
#else
static char *tuple_format = "kiiiiiis#";
#endif
/* A RevlogNG v1 index entry is 64 bytes long. */
static const long v1_hdrsize = 64;
/*
* Return a pointer to the beginning of a RevlogNG record.
*/
static const char *index_deref(indexObject *self, Py_ssize_t pos)
{
if (self->inlined && pos > 0) {
if (self->offsets == NULL) {
self->offsets = PyMem_Malloc(self->raw_length *
sizeof(*self->offsets));
if (self->offsets == NULL)
return (const char *)PyErr_NoMemory();
inline_scan(self, self->offsets);
}
return self->offsets[pos];
}
return (const char *)(self->buf.buf) + pos * v1_hdrsize;
}
static inline int index_get_parents(indexObject *self, Py_ssize_t rev,
int *ps, int maxrev)
{
if (rev >= self->length - 1) {
PyObject *tuple = PyList_GET_ITEM(self->added,
rev - self->length + 1);
ps[0] = (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 5));
ps[1] = (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 6));
} else {
const char *data = index_deref(self, rev);
ps[0] = getbe32(data + 24);
ps[1] = getbe32(data + 28);
}
/* If index file is corrupted, ps[] may point to invalid revisions. So
* there is a risk of buffer overflow to trust them unconditionally. */
if (ps[0] > maxrev || ps[1] > maxrev) {
PyErr_SetString(PyExc_ValueError, "parent out of range");
return -1;
}
return 0;
}
/*
* RevlogNG format (all in big endian, data may be inlined):
* 6 bytes: offset
* 2 bytes: flags
* 4 bytes: compressed length
* 4 bytes: uncompressed length
* 4 bytes: base revision
* 4 bytes: link revision
* 4 bytes: parent 1 revision
* 4 bytes: parent 2 revision
* 32 bytes: nodeid (only 20 bytes used)
*/
static PyObject *index_get(indexObject *self, Py_ssize_t pos)
{
uint64_t offset_flags;
int comp_len, uncomp_len, base_rev, link_rev, parent_1, parent_2;
const char *c_node_id;
const char *data;
Py_ssize_t length = index_length(self);
PyObject *entry;
if (pos < 0)
pos += length;
if (pos < 0 || pos >= length) {
PyErr_SetString(PyExc_IndexError, "revlog index out of range");
return NULL;
}
if (pos == length - 1) {
Py_INCREF(nullentry);
return nullentry;
}
if (pos >= self->length - 1) {
PyObject *obj;
obj = PyList_GET_ITEM(self->added, pos - self->length + 1);
Py_INCREF(obj);
return obj;
}
if (self->cache) {
if (self->cache[pos]) {
Py_INCREF(self->cache[pos]);
return self->cache[pos];
}
} else {
self->cache = calloc(self->raw_length, sizeof(PyObject *));
if (self->cache == NULL)
return PyErr_NoMemory();
}
data = index_deref(self, pos);
if (data == NULL)
return NULL;
offset_flags = getbe32(data + 4);
if (pos == 0) /* mask out version number for the first entry */
offset_flags &= 0xFFFF;
else {
uint32_t offset_high = getbe32(data);
offset_flags |= ((uint64_t)offset_high) << 32;
}
comp_len = getbe32(data + 8);
uncomp_len = getbe32(data + 12);
base_rev = getbe32(data + 16);
link_rev = getbe32(data + 20);
parent_1 = getbe32(data + 24);
parent_2 = getbe32(data + 28);
c_node_id = data + 32;
entry = Py_BuildValue(tuple_format, offset_flags, comp_len,
uncomp_len, base_rev, link_rev,
parent_1, parent_2, c_node_id, 20);
if (entry) {
PyObject_GC_UnTrack(entry);
Py_INCREF(entry);
}
self->cache[pos] = entry;
return entry;
}
/*
* Return the 20-byte SHA of the node corresponding to the given rev.
*/
static const char *index_node(indexObject *self, Py_ssize_t pos)
{
Py_ssize_t length = index_length(self);
const char *data;
if (pos == length - 1 || pos == INT_MAX)
return nullid;
if (pos >= length)
return NULL;
if (pos >= self->length - 1) {
PyObject *tuple, *str;
tuple = PyList_GET_ITEM(self->added, pos - self->length + 1);
str = PyTuple_GetItem(tuple, 7);
return str ? PyBytes_AS_STRING(str) : NULL;
}
data = index_deref(self, pos);
return data ? data + 32 : NULL;
}
static int nt_insert(indexObject *self, const char *node, int rev);
static int node_check(PyObject *obj, char **node, Py_ssize_t *nodelen)
{
if (PyBytes_AsStringAndSize(obj, node, nodelen) == -1)
return -1;
if (*nodelen == 20)
return 0;
PyErr_SetString(PyExc_ValueError, "20-byte hash required");
return -1;
}
static PyObject *index_insert(indexObject *self, PyObject *args)
{
PyObject *obj;
char *node;
int index;
Py_ssize_t len, nodelen;
if (!PyArg_ParseTuple(args, "iO", &index, &obj))
return NULL;
if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 8) {
PyErr_SetString(PyExc_TypeError, "8-tuple required");
return NULL;
}
if (node_check(PyTuple_GET_ITEM(obj, 7), &node, &nodelen) == -1)
return NULL;
len = index_length(self);
if (index < 0)
index += len;
if (index != len - 1) {
PyErr_SetString(PyExc_IndexError,
"insert only supported at index -1");
return NULL;
}
if (self->added == NULL) {
self->added = PyList_New(0);
if (self->added == NULL)
return NULL;
}
if (PyList_Append(self->added, obj) == -1)
return NULL;
if (self->nt)
nt_insert(self, node, index);
Py_CLEAR(self->headrevs);
Py_RETURN_NONE;
}
static void _index_clearcaches(indexObject *self)
{
if (self->cache) {
Py_ssize_t i;
for (i = 0; i < self->raw_length; i++)
Py_CLEAR(self->cache[i]);
free(self->cache);
self->cache = NULL;
}
if (self->offsets) {
PyMem_Free(self->offsets);
self->offsets = NULL;
}
if (self->nt) {
free(self->nt);
self->nt = NULL;
}
Py_CLEAR(self->headrevs);
}
static PyObject *index_clearcaches(indexObject *self)
{
_index_clearcaches(self);
self->ntlength = self->ntcapacity = 0;
self->ntdepth = self->ntsplits = 0;
self->ntrev = -1;
self->ntlookups = self->ntmisses = 0;
Py_RETURN_NONE;
}
static PyObject *index_stats(indexObject *self)
{
PyObject *obj = PyDict_New();
PyObject *t = NULL;
if (obj == NULL)
return NULL;
#define istat(__n, __d) \
do { \
t = PyInt_FromSsize_t(self->__n); \
if (!t) \
goto bail; \
if (PyDict_SetItemString(obj, __d, t) == -1) \
goto bail; \
Py_DECREF(t); \
} while (0)
if (self->added) {
Py_ssize_t len = PyList_GET_SIZE(self->added);
t = PyInt_FromSsize_t(len);
if (!t)
goto bail;
if (PyDict_SetItemString(obj, "index entries added", t) == -1)
goto bail;
Py_DECREF(t);
}
if (self->raw_length != self->length - 1)
istat(raw_length, "revs on disk");
istat(length, "revs in memory");
istat(ntcapacity, "node trie capacity");
istat(ntdepth, "node trie depth");
istat(ntlength, "node trie count");
istat(ntlookups, "node trie lookups");
istat(ntmisses, "node trie misses");
istat(ntrev, "node trie last rev scanned");
istat(ntsplits, "node trie splits");
#undef istat
return obj;
bail:
Py_XDECREF(obj);
Py_XDECREF(t);
return NULL;
}
/*
* When we cache a list, we want to be sure the caller can't mutate
* the cached copy.
*/
static PyObject *list_copy(PyObject *list)
{
Py_ssize_t len = PyList_GET_SIZE(list);
PyObject *newlist = PyList_New(len);
Py_ssize_t i;
if (newlist == NULL)
return NULL;
for (i = 0; i < len; i++) {
PyObject *obj = PyList_GET_ITEM(list, i);
Py_INCREF(obj);
PyList_SET_ITEM(newlist, i, obj);
}
return newlist;
}
static int check_filter(PyObject *filter, Py_ssize_t arg)
{
if (filter) {
PyObject *arglist, *result;
int isfiltered;
arglist = Py_BuildValue("(n)", arg);
if (!arglist) {
return -1;
}
result = PyEval_CallObject(filter, arglist);
Py_DECREF(arglist);
if (!result) {
return -1;
}
/* PyObject_IsTrue returns 1 if true, 0 if false, -1 if error,
* same as this function, so we can just return it directly.*/
isfiltered = PyObject_IsTrue(result);
Py_DECREF(result);
return isfiltered;
} else {
return 0;
}
}
static Py_ssize_t add_roots_get_min(indexObject *self, PyObject *list,
Py_ssize_t marker, char *phases)
{
PyObject *iter = NULL;
PyObject *iter_item = NULL;
Py_ssize_t min_idx = index_length(self) + 1;
long iter_item_long;
if (PyList_GET_SIZE(list) != 0) {
iter = PyObject_GetIter(list);
if (iter == NULL)
return -2;
while ((iter_item = PyIter_Next(iter))) {
iter_item_long = PyInt_AS_LONG(iter_item);
Py_DECREF(iter_item);
if (iter_item_long < min_idx)
min_idx = iter_item_long;
phases[iter_item_long] = marker;
}
Py_DECREF(iter);
}
return min_idx;
}
static inline void set_phase_from_parents(char *phases, int parent_1,
int parent_2, Py_ssize_t i)
{
if (parent_1 >= 0 && phases[parent_1] > phases[i])
phases[i] = phases[parent_1];
if (parent_2 >= 0 && phases[parent_2] > phases[i])
phases[i] = phases[parent_2];
}
static PyObject *reachableroots2(indexObject *self, PyObject *args)
{
/* Input */
long minroot;
PyObject *includepatharg = NULL;
int includepath = 0;
/* heads and roots are lists */
PyObject *heads = NULL;
PyObject *roots = NULL;
PyObject *reachable = NULL;
PyObject *val;
Py_ssize_t len = index_length(self) - 1;
long revnum;
Py_ssize_t k;
Py_ssize_t i;
Py_ssize_t l;
int r;
int parents[2];
/* Internal data structure:
* tovisit: array of length len+1 (all revs + nullrev), filled upto lentovisit
* revstates: array of length len+1 (all revs + nullrev) */
int *tovisit = NULL;
long lentovisit = 0;
enum { RS_SEEN = 1, RS_ROOT = 2, RS_REACHABLE = 4 };
char *revstates = NULL;
/* Get arguments */
if (!PyArg_ParseTuple(args, "lO!O!O!", &minroot, &PyList_Type, &heads,
&PyList_Type, &roots,
&PyBool_Type, &includepatharg))
goto bail;
if (includepatharg == Py_True)
includepath = 1;
/* Initialize return set */
reachable = PyList_New(0);
if (reachable == NULL)
goto bail;
/* Initialize internal datastructures */
tovisit = (int *)malloc((len + 1) * sizeof(int));
if (tovisit == NULL) {
PyErr_NoMemory();
goto bail;
}
revstates = (char *)calloc(len + 1, 1);
if (revstates == NULL) {
PyErr_NoMemory();
goto bail;
}
l = PyList_GET_SIZE(roots);
for (i = 0; i < l; i++) {
revnum = PyInt_AsLong(PyList_GET_ITEM(roots, i));
if (revnum == -1 && PyErr_Occurred())
goto bail;
/* If root is out of range, e.g. wdir(), it must be unreachable
* from heads. So we can just ignore it. */
if (revnum + 1 < 0 || revnum + 1 >= len + 1)
continue;
revstates[revnum + 1] |= RS_ROOT;
}
/* Populate tovisit with all the heads */
l = PyList_GET_SIZE(heads);
for (i = 0; i < l; i++) {
revnum = PyInt_AsLong(PyList_GET_ITEM(heads, i));
if (revnum == -1 && PyErr_Occurred())
goto bail;
if (revnum + 1 < 0 || revnum + 1 >= len + 1) {
PyErr_SetString(PyExc_IndexError, "head out of range");
goto bail;
}
if (!(revstates[revnum + 1] & RS_SEEN)) {
tovisit[lentovisit++] = (int)revnum;
revstates[revnum + 1] |= RS_SEEN;
}
}
/* Visit the tovisit list and find the reachable roots */
k = 0;
while (k < lentovisit) {
/* Add the node to reachable if it is a root*/
revnum = tovisit[k++];
if (revstates[revnum + 1] & RS_ROOT) {
revstates[revnum + 1] |= RS_REACHABLE;
val = PyInt_FromLong(revnum);
if (val == NULL)
goto bail;
r = PyList_Append(reachable, val);
Py_DECREF(val);
if (r < 0)
goto bail;
if (includepath == 0)
continue;
}
/* Add its parents to the list of nodes to visit */
if (revnum == -1)
continue;
r = index_get_parents(self, revnum, parents, (int)len - 1);
if (r < 0)
goto bail;
for (i = 0; i < 2; i++) {
if (!(revstates[parents[i] + 1] & RS_SEEN)
&& parents[i] >= minroot) {
tovisit[lentovisit++] = parents[i];
revstates[parents[i] + 1] |= RS_SEEN;
}
}
}
/* Find all the nodes in between the roots we found and the heads
* and add them to the reachable set */
if (includepath == 1) {
long minidx = minroot;
if (minidx < 0)
minidx = 0;
for (i = minidx; i < len; i++) {
if (!(revstates[i + 1] & RS_SEEN))
continue;
r = index_get_parents(self, i, parents, (int)len - 1);
/* Corrupted index file, error is set from
* index_get_parents */
if (r < 0)
goto bail;
if (((revstates[parents[0] + 1] |
revstates[parents[1] + 1]) & RS_REACHABLE)
&& !(revstates[i + 1] & RS_REACHABLE)) {
revstates[i + 1] |= RS_REACHABLE;
val = PyInt_FromLong(i);
if (val == NULL)
goto bail;
r = PyList_Append(reachable, val);
Py_DECREF(val);
if (r < 0)
goto bail;
}
}
}
free(revstates);
free(tovisit);
return reachable;
bail:
Py_XDECREF(reachable);
free(revstates);
free(tovisit);
return NULL;
}
static PyObject *compute_phases_map_sets(indexObject *self, PyObject *args)
{
PyObject *roots = Py_None;
PyObject *ret = NULL;
PyObject *phasessize = NULL;
PyObject *phaseroots = NULL;
PyObject *phaseset = NULL;
PyObject *phasessetlist = NULL;
PyObject *rev = NULL;
Py_ssize_t len = index_length(self) - 1;
Py_ssize_t numphase = 0;
Py_ssize_t minrevallphases = 0;
Py_ssize_t minrevphase = 0;
Py_ssize_t i = 0;
char *phases = NULL;
long phase;
if (!PyArg_ParseTuple(args, "O", &roots))
goto done;
if (roots == NULL || !PyList_Check(roots))
goto done;
phases = calloc(len, 1); /* phase per rev: {0: public, 1: draft, 2: secret} */
if (phases == NULL) {
PyErr_NoMemory();
goto done;
}
/* Put the phase information of all the roots in phases */
numphase = PyList_GET_SIZE(roots)+1;
minrevallphases = len + 1;
phasessetlist = PyList_New(numphase);
if (phasessetlist == NULL)
goto done;
PyList_SET_ITEM(phasessetlist, 0, Py_None);
Py_INCREF(Py_None);
for (i = 0; i < numphase-1; i++) {
phaseroots = PyList_GET_ITEM(roots, i);
phaseset = PySet_New(NULL);
if (phaseset == NULL)
goto release;
PyList_SET_ITEM(phasessetlist, i+1, phaseset);
if (!PyList_Check(phaseroots))
goto release;
minrevphase = add_roots_get_min(self, phaseroots, i+1, phases);
if (minrevphase == -2) /* Error from add_roots_get_min */
goto release;
minrevallphases = MIN(minrevallphases, minrevphase);
}
/* Propagate the phase information from the roots to the revs */
if (minrevallphases != -1) {
int parents[2];
for (i = minrevallphases; i < len; i++) {
if (index_get_parents(self, i, parents,
(int)len - 1) < 0)
goto release;
set_phase_from_parents(phases, parents[0], parents[1], i);
}
}
/* Transform phase list to a python list */
phasessize = PyInt_FromLong(len);
if (phasessize == NULL)
goto release;
for (i = 0; i < len; i++) {
phase = phases[i];
/* We only store the sets of phase for non public phase, the public phase
* is computed as a difference */
if (phase != 0) {
phaseset = PyList_GET_ITEM(phasessetlist, phase);
rev = PyInt_FromLong(i);
if (rev == NULL)
goto release;
PySet_Add(phaseset, rev);
Py_XDECREF(rev);
}
}
ret = PyTuple_Pack(2, phasessize, phasessetlist);
release:
Py_XDECREF(phasessize);
Py_XDECREF(phasessetlist);
done:
free(phases);
return ret;
}
static PyObject *index_headrevs(indexObject *self, PyObject *args)
{
Py_ssize_t i, j, len;
char *nothead = NULL;
PyObject *heads = NULL;
PyObject *filter = NULL;
PyObject *filteredrevs = Py_None;
if (!PyArg_ParseTuple(args, "|O", &filteredrevs)) {
return NULL;
}
if (self->headrevs && filteredrevs == self->filteredrevs)
return list_copy(self->headrevs);
Py_DECREF(self->filteredrevs);
self->filteredrevs = filteredrevs;
Py_INCREF(filteredrevs);
if (filteredrevs != Py_None) {
filter = PyObject_GetAttrString(filteredrevs, "__contains__");
if (!filter) {
PyErr_SetString(PyExc_TypeError,
"filteredrevs has no attribute __contains__");
goto bail;
}
}
len = index_length(self) - 1;
heads = PyList_New(0);
if (heads == NULL)
goto bail;
if (len == 0) {
PyObject *nullid = PyInt_FromLong(-1);
if (nullid == NULL || PyList_Append(heads, nullid) == -1) {
Py_XDECREF(nullid);
goto bail;
}
goto done;
}
nothead = calloc(len, 1);
if (nothead == NULL) {
PyErr_NoMemory();
goto bail;
}
for (i = len - 1; i >= 0; i--) {
int isfiltered;
int parents[2];
/* If nothead[i] == 1, it means we've seen an unfiltered child of this
* node already, and therefore this node is not filtered. So we can skip
* the expensive check_filter step.
*/
if (nothead[i] != 1) {
isfiltered = check_filter(filter, i);
if (isfiltered == -1) {
PyErr_SetString(PyExc_TypeError,
"unable to check filter");
goto bail;
}
if (isfiltered) {
nothead[i] = 1;
continue;
}
}
if (index_get_parents(self, i, parents, (int)len - 1) < 0)
goto bail;
for (j = 0; j < 2; j++) {
if (parents[j] >= 0)
nothead[parents[j]] = 1;
}
}
for (i = 0; i < len; i++) {
PyObject *head;
if (nothead[i])
continue;
head = PyInt_FromSsize_t(i);
if (head == NULL || PyList_Append(heads, head) == -1) {
Py_XDECREF(head);
goto bail;
}
}
done:
self->headrevs = heads;
Py_XDECREF(filter);
free(nothead);
return list_copy(self->headrevs);
bail:
Py_XDECREF(filter);
Py_XDECREF(heads);
free(nothead);
return NULL;
}
/**
* Obtain the base revision index entry.
*
* Callers must ensure that rev >= 0 or illegal memory access may occur.
*/
static inline int index_baserev(indexObject *self, int rev)
{
const char *data;
if (rev >= self->length - 1) {
PyObject *tuple = PyList_GET_ITEM(self->added,
rev - self->length + 1);
return (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 3));
}
else {
data = index_deref(self, rev);
if (data == NULL) {
return -2;
}
return getbe32(data + 16);
}
}
static PyObject *index_deltachain(indexObject *self, PyObject *args)
{
int rev, generaldelta;
PyObject *stoparg;
int stoprev, iterrev, baserev = -1;
int stopped;
PyObject *chain = NULL, *result = NULL;
const Py_ssize_t length = index_length(self);
if (!PyArg_ParseTuple(args, "iOi", &rev, &stoparg, &generaldelta)) {
return NULL;
}
if (PyInt_Check(stoparg)) {
stoprev = (int)PyInt_AsLong(stoparg);
if (stoprev == -1 && PyErr_Occurred()) {
return NULL;
}
}
else if (stoparg == Py_None) {
stoprev = -2;
}
else {
PyErr_SetString(PyExc_ValueError,
"stoprev must be integer or None");
return NULL;
}
if (rev < 0 || rev >= length - 1) {
PyErr_SetString(PyExc_ValueError, "revlog index out of range");
return NULL;
}
chain = PyList_New(0);
if (chain == NULL) {
return NULL;
}
baserev = index_baserev(self, rev);
/* This should never happen. */
if (baserev <= -2) {
/* Error should be set by index_deref() */
assert(PyErr_Occurred());
goto bail;
}
iterrev = rev;
while (iterrev != baserev && iterrev != stoprev) {
PyObject *value = PyInt_FromLong(iterrev);
if (value == NULL) {
goto bail;
}
if (PyList_Append(chain, value)) {
Py_DECREF(value);
goto bail;
}
Py_DECREF(value);
if (generaldelta) {
iterrev = baserev;
}
else {
iterrev--;
}
if (iterrev < 0) {
break;
}
if (iterrev >= length - 1) {
PyErr_SetString(PyExc_IndexError, "revision outside index");
return NULL;
}
baserev = index_baserev(self, iterrev);
/* This should never happen. */
if (baserev <= -2) {
/* Error should be set by index_deref() */
assert(PyErr_Occurred());
goto bail;
}
}
if (iterrev == stoprev) {
stopped = 1;
}
else {
PyObject *value = PyInt_FromLong(iterrev);
if (value == NULL) {
goto bail;
}
if (PyList_Append(chain, value)) {
Py_DECREF(value);
goto bail;
}
Py_DECREF(value);
stopped = 0;
}
if (PyList_Reverse(chain)) {
goto bail;
}
result = Py_BuildValue("OO", chain, stopped ? Py_True : Py_False);
Py_DECREF(chain);
return result;
bail:
Py_DECREF(chain);
return NULL;
}
static inline int nt_level(const char *node, Py_ssize_t level)
{
int v = node[level>>1];
if (!(level & 1))
v >>= 4;
return v & 0xf;
}
/*
* Return values:
*
* -4: match is ambiguous (multiple candidates)
* -2: not found
* rest: valid rev
*/
static int nt_find(indexObject *self, const char *node, Py_ssize_t nodelen,
int hex)
{
int (*getnybble)(const char *, Py_ssize_t) = hex ? hexdigit : nt_level;
int level, maxlevel, off;
if (nodelen == 20 && node[0] == '\0' && memcmp(node, nullid, 20) == 0)
return -1;
if (self->nt == NULL)
return -2;
if (hex)
maxlevel = nodelen > 40 ? 40 : (int)nodelen;
else
maxlevel = nodelen > 20 ? 40 : ((int)nodelen * 2);
for (level = off = 0; level < maxlevel; level++) {
int k = getnybble(node, level);
nodetree *n = &self->nt[off];
int v = n->children[k];
if (v < 0) {
const char *n;
Py_ssize_t i;
v = -(v + 1);
n = index_node(self, v);
if (n == NULL)
return -2;
for (i = level; i < maxlevel; i++)
if (getnybble(node, i) != nt_level(n, i))
return -2;
return v;
}
if (v == 0)
return -2;
off = v;
}
/* multiple matches against an ambiguous prefix */
return -4;
}
static int nt_new(indexObject *self)
{
if (self->ntlength == self->ntcapacity) {
if (self->ntcapacity >= INT_MAX / (sizeof(nodetree) * 2)) {
PyErr_SetString(PyExc_MemoryError,
"overflow in nt_new");
return -1;
}
self->ntcapacity *= 2;
self->nt = realloc(self->nt,
self->ntcapacity * sizeof(nodetree));
if (self->nt == NULL) {
PyErr_SetString(PyExc_MemoryError, "out of memory");
return -1;
}
memset(&self->nt[self->ntlength], 0,
sizeof(nodetree) * (self->ntcapacity - self->ntlength));
}
return self->ntlength++;
}
static int nt_insert(indexObject *self, const char *node, int rev)
{
int level = 0;
int off = 0;
while (level < 40) {
int k = nt_level(node, level);
nodetree *n;
int v;
n = &self->nt[off];
v = n->children[k];
if (v == 0) {
n->children[k] = -rev - 1;
return 0;
}
if (v < 0) {
const char *oldnode = index_node(self, -(v + 1));
int noff;
if (!oldnode || !memcmp(oldnode, node, 20)) {
n->children[k] = -rev - 1;
return 0;
}
noff = nt_new(self);
if (noff == -1)
return -1;
/* self->nt may have been changed by realloc */
self->nt[off].children[k] = noff;
off = noff;
n = &self->nt[off];
n->children[nt_level(oldnode, ++level)] = v;
if (level > self->ntdepth)
self->ntdepth = level;
self->ntsplits += 1;
} else {
level += 1;
off = v;
}
}
return -1;
}
static int nt_init(indexObject *self)
{
if (self->nt == NULL) {
if ((size_t)self->raw_length > INT_MAX / sizeof(nodetree)) {
PyErr_SetString(PyExc_ValueError, "overflow in nt_init");
return -1;
}
self->ntcapacity = self->raw_length < 4
? 4 : (int)self->raw_length / 2;
self->nt = calloc(self->ntcapacity, sizeof(nodetree));
if (self->nt == NULL) {
PyErr_NoMemory();
return -1;
}
self->ntlength = 1;
self->ntrev = (int)index_length(self) - 1;
self->ntlookups = 1;
self->ntmisses = 0;
if (nt_insert(self, nullid, INT_MAX) == -1)
return -1;
}
return 0;
}
/*
* Return values:
*
* -3: error (exception set)
* -2: not found (no exception set)
* rest: valid rev
*/
static int index_find_node(indexObject *self,
const char *node, Py_ssize_t nodelen)
{
int rev;
self->ntlookups++;
rev = nt_find(self, node, nodelen, 0);
if (rev >= -1)
return rev;
if (nt_init(self) == -1)
return -3;
/*
* For the first handful of lookups, we scan the entire index,
* and cache only the matching nodes. This optimizes for cases
* like "hg tip", where only a few nodes are accessed.
*
* After that, we cache every node we visit, using a single
* scan amortized over multiple lookups. This gives the best
* bulk performance, e.g. for "hg log".
*/
if (self->ntmisses++ < 4) {
for (rev = self->ntrev - 1; rev >= 0; rev--) {
const char *n = index_node(self, rev);
if (n == NULL)
return -2;
if (memcmp(node, n, nodelen > 20 ? 20 : nodelen) == 0) {
if (nt_insert(self, n, rev) == -1)
return -3;
break;
}
}
} else {
for (rev = self->ntrev - 1; rev >= 0; rev--) {
const char *n = index_node(self, rev);
if (n == NULL) {
self->ntrev = rev + 1;
return -2;
}
if (nt_insert(self, n, rev) == -1) {
self->ntrev = rev + 1;
return -3;
}
if (memcmp(node, n, nodelen > 20 ? 20 : nodelen) == 0) {
break;
}
}
self->ntrev = rev;
}
if (rev >= 0)
return rev;
return -2;
}
static void raise_revlog_error(void)
{
PyObject *mod = NULL, *dict = NULL, *errclass = NULL;
mod = PyImport_ImportModule("mercurial.error");
if (mod == NULL) {
goto cleanup;
}
dict = PyModule_GetDict(mod);
if (dict == NULL) {
goto cleanup;
}
Py_INCREF(dict);
errclass = PyDict_GetItemString(dict, "RevlogError");
if (errclass == NULL) {
PyErr_SetString(PyExc_SystemError,
"could not find RevlogError");
goto cleanup;
}
/* value of exception is ignored by callers */
PyErr_SetString(errclass, "RevlogError");
cleanup:
Py_XDECREF(dict);
Py_XDECREF(mod);
}
static PyObject *index_getitem(indexObject *self, PyObject *value)
{
char *node;
Py_ssize_t nodelen;
int rev;
if (PyInt_Check(value))
return index_get(self, PyInt_AS_LONG(value));
if (node_check(value, &node, &nodelen) == -1)
return NULL;
rev = index_find_node(self, node, nodelen);
if (rev >= -1)
return PyInt_FromLong(rev);
if (rev == -2)
raise_revlog_error();
return NULL;
}
static int nt_partialmatch(indexObject *self, const char *node,
Py_ssize_t nodelen)
{
int rev;
if (nt_init(self) == -1)
return -3;
if (self->ntrev > 0) {
/* ensure that the radix tree is fully populated */
for (rev = self->ntrev - 1; rev >= 0; rev--) {
const char *n = index_node(self, rev);
if (n == NULL)
return -2;
if (nt_insert(self, n, rev) == -1)
return -3;
}
self->ntrev = rev;
}
return nt_find(self, node, nodelen, 1);
}
static PyObject *index_partialmatch(indexObject *self, PyObject *args)
{
const char *fullnode;
int nodelen;
char *node;
int rev, i;
if (!PyArg_ParseTuple(args, "s#", &node, &nodelen))
return NULL;
if (nodelen < 4) {
PyErr_SetString(PyExc_ValueError, "key too short");
return NULL;
}
if (nodelen > 40) {
PyErr_SetString(PyExc_ValueError, "key too long");
return NULL;
}
for (i = 0; i < nodelen; i++)
hexdigit(node, i);
if (PyErr_Occurred()) {
/* input contains non-hex characters */
PyErr_Clear();
Py_RETURN_NONE;
}
rev = nt_partialmatch(self, node, nodelen);
switch (rev) {
case -4:
raise_revlog_error();
case -3:
return NULL;
case -2:
Py_RETURN_NONE;
case -1:
return PyBytes_FromStringAndSize(nullid, 20);
}
fullnode = index_node(self, rev);
if (fullnode == NULL) {
PyErr_Format(PyExc_IndexError,
"could not access rev %d", rev);
return NULL;
}
return PyBytes_FromStringAndSize(fullnode, 20);
}
static PyObject *index_m_get(indexObject *self, PyObject *args)
{
Py_ssize_t nodelen;
PyObject *val;
char *node;
int rev;
if (!PyArg_ParseTuple(args, "O", &val))
return NULL;
if (node_check(val, &node, &nodelen) == -1)
return NULL;
rev = index_find_node(self, node, nodelen);
if (rev == -3)
return NULL;
if (rev == -2)
Py_RETURN_NONE;
return PyInt_FromLong(rev);
}
static int index_contains(indexObject *self, PyObject *value)
{
char *node;
Py_ssize_t nodelen;
if (PyInt_Check(value)) {
long rev = PyInt_AS_LONG(value);
return rev >= -1 && rev < index_length(self);
}
if (node_check(value, &node, &nodelen) == -1)
return -1;
switch (index_find_node(self, node, nodelen)) {
case -3:
return -1;
case -2:
return 0;
default:
return 1;
}
}
typedef uint64_t bitmask;
/*
* Given a disjoint set of revs, return all candidates for the
* greatest common ancestor. In revset notation, this is the set
* "heads(::a and ::b and ...)"
*/
static PyObject *find_gca_candidates(indexObject *self, const int *revs,
int revcount)
{
const bitmask allseen = (1ull << revcount) - 1;
const bitmask poison = 1ull << revcount;
PyObject *gca = PyList_New(0);
int i, v, interesting;
int maxrev = -1;
bitmask sp;
bitmask *seen;
if (gca == NULL)
return PyErr_NoMemory();
for (i = 0; i < revcount; i++) {
if (revs[i] > maxrev)
maxrev = revs[i];
}
seen = calloc(sizeof(*seen), maxrev + 1);
if (seen == NULL) {
Py_DECREF(gca);
return PyErr_NoMemory();
}
for (i = 0; i < revcount; i++)
seen[revs[i]] = 1ull << i;
interesting = revcount;
for (v = maxrev; v >= 0 && interesting; v--) {
bitmask sv = seen[v];
int parents[2];
if (!sv)
continue;
if (sv < poison) {
interesting -= 1;
if (sv == allseen) {
PyObject *obj = PyInt_FromLong(v);
if (obj == NULL)
goto bail;
if (PyList_Append(gca, obj) == -1) {
Py_DECREF(obj);
goto bail;
}
sv |= poison;
for (i = 0; i < revcount; i++) {
if (revs[i] == v)
goto done;
}
}
}
if (index_get_parents(self, v, parents, maxrev) < 0)
goto bail;
for (i = 0; i < 2; i++) {
int p = parents[i];
if (p == -1)
continue;
sp = seen[p];
if (sv < poison) {
if (sp == 0) {
seen[p] = sv;
interesting++;
}
else if (sp != sv)
seen[p] |= sv;
} else {
if (sp && sp < poison)
interesting--;
seen[p] = sv;
}
}
}
done:
free(seen);
return gca;
bail:
free(seen);
Py_XDECREF(gca);
return NULL;
}
/*
* Given a disjoint set of revs, return the subset with the longest
* path to the root.
*/
static PyObject *find_deepest(indexObject *self, PyObject *revs)
{
const Py_ssize_t revcount = PyList_GET_SIZE(revs);
static const Py_ssize_t capacity = 24;
int *depth, *interesting = NULL;
int i, j, v, ninteresting;
PyObject *dict = NULL, *keys = NULL;
long *seen = NULL;
int maxrev = -1;
long final;
if (revcount > capacity) {
PyErr_Format(PyExc_OverflowError,
"bitset size (%ld) > capacity (%ld)",
(long)revcount, (long)capacity);
return NULL;
}
for (i = 0; i < revcount; i++) {
int n = (int)PyInt_AsLong(PyList_GET_ITEM(revs, i));
if (n > maxrev)
maxrev = n;
}
depth = calloc(sizeof(*depth), maxrev + 1);
if (depth == NULL)
return PyErr_NoMemory();
seen = calloc(sizeof(*seen), maxrev + 1);
if (seen == NULL) {
PyErr_NoMemory();
goto bail;
}
interesting = calloc(sizeof(*interesting), 1 << revcount);
if (interesting == NULL) {
PyErr_NoMemory();
goto bail;
}
if (PyList_Sort(revs) == -1)
goto bail;
for (i = 0; i < revcount; i++) {
int n = (int)PyInt_AsLong(PyList_GET_ITEM(revs, i));
long b = 1l << i;
depth[n] = 1;
seen[n] = b;
interesting[b] = 1;
}
/* invariant: ninteresting is the number of non-zero entries in
* interesting. */
ninteresting = (int)revcount;
for (v = maxrev; v >= 0 && ninteresting > 1; v--) {
int dv = depth[v];
int parents[2];
long sv;
if (dv == 0)
continue;
sv = seen[v];
if (index_get_parents(self, v, parents, maxrev) < 0)
goto bail;
for (i = 0; i < 2; i++) {
int p = parents[i];
long sp;
int dp;
if (p == -1)
continue;
dp = depth[p];
sp = seen[p];
if (dp <= dv) {
depth[p] = dv + 1;
if (sp != sv) {
interesting[sv] += 1;
seen[p] = sv;
if (sp) {
interesting[sp] -= 1;
if (interesting[sp] == 0)
ninteresting -= 1;
}
}
}
else if (dv == dp - 1) {
long nsp = sp | sv;
if (nsp == sp)
continue;
seen[p] = nsp;
interesting[sp] -= 1;
if (interesting[sp] == 0)
ninteresting -= 1;
if (interesting[nsp] == 0)
ninteresting += 1;
interesting[nsp] += 1;
}
}
interesting[sv] -= 1;
if (interesting[sv] == 0)
ninteresting -= 1;
}
final = 0;
j = ninteresting;
for (i = 0; i < (int)(2 << revcount) && j > 0; i++) {
if (interesting[i] == 0)
continue;
final |= i;
j -= 1;
}
if (final == 0) {
keys = PyList_New(0);
goto bail;
}
dict = PyDict_New();
if (dict == NULL)
goto bail;
for (i = 0; i < revcount; i++) {
PyObject *key;
if ((final & (1 << i)) == 0)
continue;
key = PyList_GET_ITEM(revs, i);
Py_INCREF(key);
Py_INCREF(Py_None);
if (PyDict_SetItem(dict, key, Py_None) == -1) {
Py_DECREF(key);
Py_DECREF(Py_None);
goto bail;
}
}
keys = PyDict_Keys(dict);
bail:
free(depth);
free(seen);
free(interesting);
Py_XDECREF(dict);
return keys;
}
/*
* Given a (possibly overlapping) set of revs, return all the
* common ancestors heads: heads(::args[0] and ::a[1] and ...)
*/
static PyObject *index_commonancestorsheads(indexObject *self, PyObject *args)
{
PyObject *ret = NULL;
Py_ssize_t argcount, i, len;
bitmask repeat = 0;
int revcount = 0;
int *revs;
argcount = PySequence_Length(args);
revs = PyMem_Malloc(argcount * sizeof(*revs));
if (argcount > 0 && revs == NULL)
return PyErr_NoMemory();
len = index_length(self) - 1;
for (i = 0; i < argcount; i++) {
static const int capacity = 24;
PyObject *obj = PySequence_GetItem(args, i);
bitmask x;
long val;
if (!PyInt_Check(obj)) {
PyErr_SetString(PyExc_TypeError,
"arguments must all be ints");
Py_DECREF(obj);
goto bail;
}
val = PyInt_AsLong(obj);
Py_DECREF(obj);
if (val == -1) {
ret = PyList_New(0);
goto done;
}
if (val < 0 || val >= len) {
PyErr_SetString(PyExc_IndexError,
"index out of range");
goto bail;
}
/* this cheesy bloom filter lets us avoid some more
* expensive duplicate checks in the common set-is-disjoint
* case */
x = 1ull << (val & 0x3f);
if (repeat & x) {
int k;
for (k = 0; k < revcount; k++) {
if (val == revs[k])
goto duplicate;
}
}
else repeat |= x;
if (revcount >= capacity) {
PyErr_Format(PyExc_OverflowError,
"bitset size (%d) > capacity (%d)",
revcount, capacity);
goto bail;
}
revs[revcount++] = (int)val;
duplicate:;
}
if (revcount == 0) {
ret = PyList_New(0);
goto done;
}
if (revcount == 1) {
PyObject *obj;
ret = PyList_New(1);
if (ret == NULL)
goto bail;
obj = PyInt_FromLong(revs[0]);
if (obj == NULL)
goto bail;
PyList_SET_ITEM(ret, 0, obj);
goto done;
}
ret = find_gca_candidates(self, revs, revcount);
if (ret == NULL)
goto bail;
done:
PyMem_Free(revs);
return ret;
bail:
PyMem_Free(revs);
Py_XDECREF(ret);
return NULL;
}
/*
* Given a (possibly overlapping) set of revs, return the greatest
* common ancestors: those with the longest path to the root.
*/
static PyObject *index_ancestors(indexObject *self, PyObject *args)
{
PyObject *ret;
PyObject *gca = index_commonancestorsheads(self, args);
if (gca == NULL)
return NULL;
if (PyList_GET_SIZE(gca) <= 1) {
return gca;
}
ret = find_deepest(self, gca);
Py_DECREF(gca);
return ret;
}
/*
* Invalidate any trie entries introduced by added revs.
*/
static void nt_invalidate_added(indexObject *self, Py_ssize_t start)
{
Py_ssize_t i, len = PyList_GET_SIZE(self->added);
for (i = start; i < len; i++) {
PyObject *tuple = PyList_GET_ITEM(self->added, i);
PyObject *node = PyTuple_GET_ITEM(tuple, 7);
nt_insert(self, PyBytes_AS_STRING(node), -1);
}
if (start == 0)
Py_CLEAR(self->added);
}
/*
* Delete a numeric range of revs, which must be at the end of the
* range, but exclude the sentinel nullid entry.
*/
static int index_slice_del(indexObject *self, PyObject *item)
{
Py_ssize_t start, stop, step, slicelength;
Py_ssize_t length = index_length(self);
int ret = 0;
/* Argument changed from PySliceObject* to PyObject* in Python 3. */
#ifdef IS_PY3K
if (PySlice_GetIndicesEx(item, length,
#else
if (PySlice_GetIndicesEx((PySliceObject*)item, length,
#endif
&start, &stop, &step, &slicelength) < 0)
return -1;
if (slicelength <= 0)
return 0;
if ((step < 0 && start < stop) || (step > 0 && start > stop))
stop = start;
if (step < 0) {
stop = start + 1;
start = stop + step*(slicelength - 1) - 1;
step = -step;
}
if (step != 1) {
PyErr_SetString(PyExc_ValueError,
"revlog index delete requires step size of 1");
return -1;
}
if (stop != length - 1) {
PyErr_SetString(PyExc_IndexError,
"revlog index deletion indices are invalid");
return -1;
}
if (start < self->length - 1) {
if (self->nt) {
Py_ssize_t i;
for (i = start + 1; i < self->length - 1; i++) {
const char *node = index_node(self, i);
if (node)
nt_insert(self, node, -1);
}
if (self->added)
nt_invalidate_added(self, 0);
if (self->ntrev > start)
self->ntrev = (int)start;
}
self->length = start + 1;
if (start < self->raw_length) {
if (self->cache) {
Py_ssize_t i;
for (i = start; i < self->raw_length; i++)
Py_CLEAR(self->cache[i]);
}
self->raw_length = start;
}
goto done;
}
if (self->nt) {
nt_invalidate_added(self, start - self->length + 1);
if (self->ntrev > start)
self->ntrev = (int)start;
}
if (self->added)
ret = PyList_SetSlice(self->added, start - self->length + 1,
PyList_GET_SIZE(self->added), NULL);
done:
Py_CLEAR(self->headrevs);
return ret;
}
/*
* Supported ops:
*
* slice deletion
* string assignment (extend node->rev mapping)
* string deletion (shrink node->rev mapping)
*/
static int index_assign_subscript(indexObject *self, PyObject *item,
PyObject *value)
{
char *node;
Py_ssize_t nodelen;
long rev;
if (PySlice_Check(item) && value == NULL)
return index_slice_del(self, item);
if (node_check(item, &node, &nodelen) == -1)
return -1;
if (value == NULL)
return self->nt ? nt_insert(self, node, -1) : 0;
rev = PyInt_AsLong(value);
if (rev > INT_MAX || rev < 0) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_ValueError, "rev out of range");
return -1;
}
if (nt_init(self) == -1)
return -1;
return nt_insert(self, node, (int)rev);
}
/*
* Find all RevlogNG entries in an index that has inline data. Update
* the optional "offsets" table with those entries.
*/
static Py_ssize_t inline_scan(indexObject *self, const char **offsets)
{
const char *data = (const char *)self->buf.buf;
Py_ssize_t pos = 0;
Py_ssize_t end = self->buf.len;
long incr = v1_hdrsize;
Py_ssize_t len = 0;
while (pos + v1_hdrsize <= end && pos >= 0) {
uint32_t comp_len;
/* 3rd element of header is length of compressed inline data */
comp_len = getbe32(data + pos + 8);
incr = v1_hdrsize + comp_len;
if (offsets)
offsets[len] = data + pos;
len++;
pos += incr;
}
if (pos != end) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_ValueError, "corrupt index file");
return -1;
}
return len;
}
static int index_init(indexObject *self, PyObject *args)
{
PyObject *data_obj, *inlined_obj;
Py_ssize_t size;
/* Initialize before argument-checking to avoid index_dealloc() crash. */
self->raw_length = 0;
self->added = NULL;
self->cache = NULL;
self->data = NULL;
memset(&self->buf, 0, sizeof(self->buf));
self->headrevs = NULL;
self->filteredrevs = Py_None;
Py_INCREF(Py_None);
self->nt = NULL;
self->offsets = NULL;
if (!PyArg_ParseTuple(args, "OO", &data_obj, &inlined_obj))
return -1;
if (!PyObject_CheckBuffer(data_obj)) {
PyErr_SetString(PyExc_TypeError,
"data does not support buffer interface");
return -1;
}
if (PyObject_GetBuffer(data_obj, &self->buf, PyBUF_SIMPLE) == -1)
return -1;
size = self->buf.len;
self->inlined = inlined_obj && PyObject_IsTrue(inlined_obj);
self->data = data_obj;
self->ntlength = self->ntcapacity = 0;
self->ntdepth = self->ntsplits = 0;
self->ntlookups = self->ntmisses = 0;
self->ntrev = -1;
Py_INCREF(self->data);
if (self->inlined) {
Py_ssize_t len = inline_scan(self, NULL);
if (len == -1)
goto bail;
self->raw_length = len;
self->length = len + 1;
} else {
if (size % v1_hdrsize) {
PyErr_SetString(PyExc_ValueError, "corrupt index file");
goto bail;
}
self->raw_length = size / v1_hdrsize;
self->length = self->raw_length + 1;
}
return 0;
bail:
return -1;
}
static PyObject *index_nodemap(indexObject *self)
{
Py_INCREF(self);
return (PyObject *)self;
}
static void index_dealloc(indexObject *self)
{
_index_clearcaches(self);
Py_XDECREF(self->filteredrevs);
if (self->buf.buf) {
PyBuffer_Release(&self->buf);
memset(&self->buf, 0, sizeof(self->buf));
}
Py_XDECREF(self->data);
Py_XDECREF(self->added);
PyObject_Del(self);
}
static PySequenceMethods index_sequence_methods = {
(lenfunc)index_length, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
(ssizeargfunc)index_get, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)index_contains, /* sq_contains */
};
static PyMappingMethods index_mapping_methods = {
(lenfunc)index_length, /* mp_length */
(binaryfunc)index_getitem, /* mp_subscript */
(objobjargproc)index_assign_subscript, /* mp_ass_subscript */
};
static PyMethodDef index_methods[] = {
{"ancestors", (PyCFunction)index_ancestors, METH_VARARGS,
"return the gca set of the given revs"},
{"commonancestorsheads", (PyCFunction)index_commonancestorsheads,
METH_VARARGS,
"return the heads of the common ancestors of the given revs"},
{"clearcaches", (PyCFunction)index_clearcaches, METH_NOARGS,
"clear the index caches"},
{"get", (PyCFunction)index_m_get, METH_VARARGS,
"get an index entry"},
{"computephasesmapsets", (PyCFunction)compute_phases_map_sets,
METH_VARARGS, "compute phases"},
{"reachableroots2", (PyCFunction)reachableroots2, METH_VARARGS,
"reachableroots"},
{"headrevs", (PyCFunction)index_headrevs, METH_VARARGS,
"get head revisions"}, /* Can do filtering since 3.2 */
{"headrevsfiltered", (PyCFunction)index_headrevs, METH_VARARGS,
"get filtered head revisions"}, /* Can always do filtering */
{"deltachain", (PyCFunction)index_deltachain, METH_VARARGS,
"determine revisions with deltas to reconstruct fulltext"},
{"insert", (PyCFunction)index_insert, METH_VARARGS,
"insert an index entry"},
{"partialmatch", (PyCFunction)index_partialmatch, METH_VARARGS,
"match a potentially ambiguous node ID"},
{"stats", (PyCFunction)index_stats, METH_NOARGS,
"stats for the index"},
{NULL} /* Sentinel */
};
static PyGetSetDef index_getset[] = {
{"nodemap", (getter)index_nodemap, NULL, "nodemap", NULL},
{NULL} /* Sentinel */
};
static PyTypeObject indexType = {
PyVarObject_HEAD_INIT(NULL, 0) /* header */
"parsers.index", /* tp_name */
sizeof(indexObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)index_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
&index_sequence_methods, /* tp_as_sequence */
&index_mapping_methods, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
"revlog index", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
index_methods, /* tp_methods */
0, /* tp_members */
index_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)index_init, /* tp_init */
0, /* tp_alloc */
};
/*
* returns a tuple of the form (index, index, cache) with elements as
* follows:
*
* index: an index object that lazily parses RevlogNG records
* cache: if data is inlined, a tuple (0, index_file_content), else None
* index_file_content could be a string, or a buffer
*
* added complications are for backwards compatibility
*/
PyObject *parse_index2(PyObject *self, PyObject *args)
{
PyObject *tuple = NULL, *cache = NULL;
indexObject *idx;
int ret;
idx = PyObject_New(indexObject, &indexType);
if (idx == NULL)
goto bail;
ret = index_init(idx, args);
if (ret == -1)
goto bail;
if (idx->inlined) {
cache = Py_BuildValue("iO", 0, idx->data);
if (cache == NULL)
goto bail;
} else {
cache = Py_None;
Py_INCREF(cache);
}
tuple = Py_BuildValue("NN", idx, cache);
if (!tuple)
goto bail;
return tuple;
bail:
Py_XDECREF(idx);
Py_XDECREF(cache);
Py_XDECREF(tuple);
return NULL;
}
void revlog_module_init(PyObject *mod)
{
indexType.tp_new = PyType_GenericNew;
if (PyType_Ready(&indexType) < 0)
return;
Py_INCREF(&indexType);
PyModule_AddObject(mod, "index", (PyObject *)&indexType);
nullentry = Py_BuildValue("iiiiiiis#", 0, 0, 0,
-1, -1, -1, -1, nullid, 20);
if (nullentry)
PyObject_GC_UnTrack(nullentry);
}