##// END OF EJS Templates
pyoxidizer: support producing MSI installers...
pyoxidizer: support producing MSI installers Newer versions of PyOxidizer have support for building WiX MSI installers "natively." Essentially, you can script the definition of your WiX installer via Starlark and PyOxidizer can invoke WiX tools to produce the installer. This commit teaches our PyOxidizer config file to produce MSI installers similarly to how `contrib/packaging/packging.py wix` would do it. We had to make a very minor change to `mercurial.wxs` to reflect different paths depending on who builds. This is because when PyOxidizer builds WiX installers, it does so from an isolated directory, not Mercurial's source directory. We simply copy the files into the build environment so they are accessible. After this change, running `pyoxidizer build msi` produces a nearly identical install layout to what the previous method produces. When I applied this series on top of the 5.8 tag, here is the list of differences and explanations: * docs/*.html files are missing from the new installer because the Python build environment doesn't have docutils. * .pyd and .exe files differ, likely because I'm using a different Visual Studio toolchain on my local computer than the official build environment. * Various .dist-info/ directories have different names. This is because older versions of PyOxidizer had buggy behavior and weren't properly normalizing package names in .dist-info/ directories. e.g. we went from `cached-property-1.5.2.dist-info` to `cached_property-1.5.2.dist-info`. * Translations (.mo files) may be missing if gettext isn't in %Path%. This is because the packaging.py code installs gettext and ensures it can be found. * Some *.dist-info/RECORD files vary due to SHA-256 content digest divergence due to build environment differences. (This should be harmless.) * The new install layout ships a python3.dll because newer versions of PyOxidizer ship this file. * The new install layout has a different vcruntime140.dll and also a vcruntime140_1.dll because newer versions of PyOxidizer ship a newer version of the Visual C++ Redistributable Runtime. The new PyOxidizer functionality is not yet integrated with packaging.py. This will come in a subsequent commit. So for now, the new functionality introduced here is unused. Differential Revision: https://phab.mercurial-scm.org/D10683

File last commit:

r45500:26114bd6 default
r47976:603efb38 default
Show More
dagops.rs
276 lines | 8.9 KiB | application/rls-services+xml | RustLexer
// dagops.rs
//
// Copyright 2019 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Miscellaneous DAG operations
//!
//! # Terminology
//! - By *relative heads* of a collection of revision numbers (`Revision`), we
//! mean those revisions that have no children among the collection.
//! - Similarly *relative roots* of a collection of `Revision`, we mean those
//! whose parents, if any, don't belong to the collection.
use super::{Graph, GraphError, Revision, NULL_REVISION};
use crate::ancestors::AncestorsIterator;
use std::collections::{BTreeSet, HashSet};
fn remove_parents<S: std::hash::BuildHasher>(
graph: &impl Graph,
rev: Revision,
set: &mut HashSet<Revision, S>,
) -> Result<(), GraphError> {
for parent in graph.parents(rev)?.iter() {
if *parent != NULL_REVISION {
set.remove(parent);
}
}
Ok(())
}
/// Relative heads out of some revisions, passed as an iterator.
///
/// These heads are defined as those revisions that have no children
/// among those emitted by the iterator.
///
/// # Performance notes
/// Internally, this clones the iterator, and builds a `HashSet` out of it.
///
/// This function takes an `Iterator` instead of `impl IntoIterator` to
/// guarantee that cloning the iterator doesn't result in cloning the full
/// construct it comes from.
pub fn heads<'a>(
graph: &impl Graph,
iter_revs: impl Clone + Iterator<Item = &'a Revision>,
) -> Result<HashSet<Revision>, GraphError> {
let mut heads: HashSet<Revision> = iter_revs.clone().cloned().collect();
heads.remove(&NULL_REVISION);
for rev in iter_revs {
if *rev != NULL_REVISION {
remove_parents(graph, *rev, &mut heads)?;
}
}
Ok(heads)
}
/// Retain in `revs` only its relative heads.
///
/// This is an in-place operation, so that control of the incoming
/// set is left to the caller.
/// - a direct Python binding would probably need to build its own `HashSet`
/// from an incoming iterable, even if its sole purpose is to extract the
/// heads.
/// - a Rust caller can decide whether cloning beforehand is appropriate
///
/// # Performance notes
/// Internally, this function will store a full copy of `revs` in a `Vec`.
pub fn retain_heads<S: std::hash::BuildHasher>(
graph: &impl Graph,
revs: &mut HashSet<Revision, S>,
) -> Result<(), GraphError> {
revs.remove(&NULL_REVISION);
// we need to construct an iterable copy of revs to avoid itering while
// mutating
let as_vec: Vec<Revision> = revs.iter().cloned().collect();
for rev in as_vec {
if rev != NULL_REVISION {
remove_parents(graph, rev, revs)?;
}
}
Ok(())
}
/// Roots of `revs`, passed as a `HashSet`
///
/// They are returned in arbitrary order
pub fn roots<G: Graph, S: std::hash::BuildHasher>(
graph: &G,
revs: &HashSet<Revision, S>,
) -> Result<Vec<Revision>, GraphError> {
let mut roots: Vec<Revision> = Vec::new();
for rev in revs {
if graph
.parents(*rev)?
.iter()
.filter(|p| **p != NULL_REVISION)
.all(|p| !revs.contains(p))
{
roots.push(*rev);
}
}
Ok(roots)
}
/// Compute the topological range between two collections of revisions
///
/// This is equivalent to the revset `<roots>::<heads>`.
///
/// Currently, the given `Graph` has to implement `Clone`, which means
/// actually cloning just a reference-counted Python pointer if
/// it's passed over through `rust-cpython`. This is due to the internal
/// use of `AncestorsIterator`
///
/// # Algorithmic details
///
/// This is a two-pass swipe inspired from what `reachableroots2` from
/// `mercurial.cext.parsers` does to obtain the same results.
///
/// - first, we climb up the DAG from `heads` in topological order, keeping
/// them in the vector `heads_ancestors` vector, and adding any element of
/// `roots` we find among them to the resulting range.
/// - Then, we iterate on that recorded vector so that a revision is always
/// emitted after its parents and add all revisions whose parents are already
/// in the range to the results.
///
/// # Performance notes
///
/// The main difference with the C implementation is that
/// the latter uses a flat array with bit flags, instead of complex structures
/// like `HashSet`, making it faster in most scenarios. In theory, it's
/// possible that the present implementation could be more memory efficient
/// for very large repositories with many branches.
pub fn range(
graph: &(impl Graph + Clone),
roots: impl IntoIterator<Item = Revision>,
heads: impl IntoIterator<Item = Revision>,
) -> Result<BTreeSet<Revision>, GraphError> {
let mut range = BTreeSet::new();
let roots: HashSet<Revision> = roots.into_iter().collect();
let min_root: Revision = match roots.iter().cloned().min() {
None => {
return Ok(range);
}
Some(r) => r,
};
// Internally, AncestorsIterator currently maintains a `HashSet`
// of all seen revision, which is also what we record, albeit in an ordered
// way. There's room for improvement on this duplication.
let ait = AncestorsIterator::new(graph.clone(), heads, min_root, true)?;
let mut heads_ancestors: Vec<Revision> = Vec::new();
for revres in ait {
let rev = revres?;
if roots.contains(&rev) {
range.insert(rev);
}
heads_ancestors.push(rev);
}
for rev in heads_ancestors.into_iter().rev() {
for parent in graph.parents(rev)?.iter() {
if *parent != NULL_REVISION && range.contains(parent) {
range.insert(rev);
}
}
}
Ok(range)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::testing::SampleGraph;
/// Apply `retain_heads()` to the given slice and return as a sorted `Vec`
fn retain_heads_sorted(
graph: &impl Graph,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
let mut revs: HashSet<Revision> = revs.iter().cloned().collect();
retain_heads(graph, &mut revs)?;
let mut as_vec: Vec<Revision> = revs.iter().cloned().collect();
as_vec.sort();
Ok(as_vec)
}
#[test]
fn test_retain_heads() -> Result<(), GraphError> {
assert_eq!(retain_heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
assert_eq!(
retain_heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![1, 6, 12]
);
assert_eq!(
retain_heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![3, 5, 8, 9]
);
Ok(())
}
/// Apply `heads()` to the given slice and return as a sorted `Vec`
fn heads_sorted(
graph: &impl Graph,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
let heads = heads(graph, revs.iter())?;
let mut as_vec: Vec<Revision> = heads.iter().cloned().collect();
as_vec.sort();
Ok(as_vec)
}
#[test]
fn test_heads() -> Result<(), GraphError> {
assert_eq!(heads_sorted(&SampleGraph, &[4, 5, 6])?, vec![5, 6]);
assert_eq!(
heads_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![1, 6, 12]
);
assert_eq!(
heads_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![3, 5, 8, 9]
);
Ok(())
}
/// Apply `roots()` and sort the result for easier comparison
fn roots_sorted(
graph: &impl Graph,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
let set: HashSet<_> = revs.iter().cloned().collect();
let mut as_vec = roots(graph, &set)?;
as_vec.sort();
Ok(as_vec)
}
#[test]
fn test_roots() -> Result<(), GraphError> {
assert_eq!(roots_sorted(&SampleGraph, &[4, 5, 6])?, vec![4]);
assert_eq!(
roots_sorted(&SampleGraph, &[4, 1, 6, 12, 0])?,
vec![0, 4, 12]
);
assert_eq!(
roots_sorted(&SampleGraph, &[1, 2, 3, 4, 5, 6, 7, 8, 9])?,
vec![1, 8]
);
Ok(())
}
/// Apply `range()` and convert the result into a Vec for easier comparison
fn range_vec(
graph: impl Graph + Clone,
roots: &[Revision],
heads: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
range(&graph, roots.iter().cloned(), heads.iter().cloned())
.map(|bs| bs.into_iter().collect())
}
#[test]
fn test_range() -> Result<(), GraphError> {
assert_eq!(range_vec(SampleGraph, &[0], &[4])?, vec![0, 1, 2, 4]);
assert_eq!(range_vec(SampleGraph, &[0], &[8])?, vec![]);
assert_eq!(
range_vec(SampleGraph, &[5, 6], &[10, 11, 13])?,
vec![5, 10]
);
assert_eq!(
range_vec(SampleGraph, &[5, 6], &[10, 12])?,
vec![5, 6, 9, 10, 12]
);
Ok(())
}
}