##// END OF EJS Templates
httppeer: detect redirect to URL without query string (issue5860)...
httppeer: detect redirect to URL without query string (issue5860) 197d10e157ce subtly changed the HTTP peer's handling of HTTP redirects. Before that changeset, we instantiated an HTTP peer instance and performed the capabilities lookup with that instance. The old code had the following relevant properties: 1) The HTTP request layer would automatically follow HTTP redirects. 2) An encountered HTTP redirect would update a peer instance variable pointing to the repo URL. 3) The peer would automagically perform a "capabilities" command request if a caller requested capabilities but capabilities were not yet defined. The first HTTP request issued by a peer is for ?cmd=capabilities. If the server responds with an HTTP redirect to a ?cmd=capabilities URL, the HTTP request layer automatically followed it, retrieved a valid capabilities response, and the peer's base URL was updated automatically so subsequent requests used the proper URL. In other words, things "just worked." In the case where the server redirected to a URL without the ?cmd=capabilities query string, the HTTP request layer would follow the redirect and likely encounter HTML. The peer's base URL would be updated and the unexpected Content-Type would raise a RepoError. We would catch RepoError and immediately call between() (testing the case for pre 0.9.1 servers not supporting the "capabilities" command). e.g. try: inst._fetchcaps() except error.RepoError: inst.between([(nullid, nullid)]) between() would eventually call into _callstream(). And _callstream() made a call to self.capable('httpheader'). capable() would call self.capabilities(), which would see that no capabilities were set (because HTML was returned for that request) and call the "capabilities" command to fetch capabilities. Because the base URL had been updated from the redirect, this 2nd "capabilities" command would succeed and the client would immediately call "between," which would also succeed. The legacy handshake succeeded. Only because "capabilities" was successfully executed as a side effect did the peer recognize that it was talking to a modern server. In other words, this all appeared to work accidentally. After 197d10e157ce, we stopped calling the "capabilities" command on the peer instance. Instead, we made the request via a low-level opener, detected the redirect as part of response handling code, and passed the redirected URL into the constructed peer instance. For cases where the redirected URL included the query string, this "just worked." But for cases where the redirected URL stripped the query string, we threw RepoError and because we removed the "between" handshake fallback, we fell through to the "is a static HTTP repo" check and performed an HTTP request for .hg/requires. While 197d10e157ce was marked as backwards incompatible, the only intended backwards incompatible behavior was not performing the "between" fallback. It was not realized that the "between" command had the side-effect of recovering from an errant redirect that dropped the query string. This commit restores the previous behavior and allows clients to handle a redirect that drops the query string. In the case where the request is redirected and the query string is dropped, we raise a special case of RepoError. We then catch this special exception in the handshake code and perform another "capabilities" request against the redirected URL. If that works, all is well. Otherwise, we fall back to the "is a static HTTP repo" check. The new code is arguably better than before 197d10e157ce, as it is explicit about the expected behavior and we avoid performing a "between" request, saving a server round trip. Differential Revision: https://phab.mercurial-scm.org/D3433

File last commit:

r37513:b1fb341d default
r37851:6169d95d @24 stable
Show More
python-zstandard.h
346 lines | 8.3 KiB | text/x-c | CLexer
/**
* Copyright (c) 2016-present, Gregory Szorc
* All rights reserved.
*
* This software may be modified and distributed under the terms
* of the BSD license. See the LICENSE file for details.
*/
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "structmember.h"
#define ZSTD_STATIC_LINKING_ONLY
#define ZDICT_STATIC_LINKING_ONLY
#include <zstd.h>
#include <zdict.h>
#define PYTHON_ZSTANDARD_VERSION "0.9.0"
typedef enum {
compressorobj_flush_finish,
compressorobj_flush_block,
} CompressorObj_Flush;
/*
Represents a ZstdCompressionParameters type.
This type holds all the low-level compression parameters that can be set.
*/
typedef struct {
PyObject_HEAD
ZSTD_CCtx_params* params;
unsigned format;
int compressionLevel;
unsigned windowLog;
unsigned hashLog;
unsigned chainLog;
unsigned searchLog;
unsigned minMatch;
unsigned targetLength;
unsigned compressionStrategy;
unsigned contentSizeFlag;
unsigned checksumFlag;
unsigned dictIDFlag;
unsigned threads;
unsigned jobSize;
unsigned overlapSizeLog;
unsigned compressLiterals;
unsigned forceMaxWindow;
unsigned enableLongDistanceMatching;
unsigned ldmHashLog;
unsigned ldmMinMatch;
unsigned ldmBucketSizeLog;
unsigned ldmHashEveryLog;
} ZstdCompressionParametersObject;
extern PyTypeObject ZstdCompressionParametersType;
/*
Represents a FrameParameters type.
This type is basically a wrapper around ZSTD_frameParams.
*/
typedef struct {
PyObject_HEAD
unsigned long long frameContentSize;
unsigned long long windowSize;
unsigned dictID;
char checksumFlag;
} FrameParametersObject;
extern PyTypeObject FrameParametersType;
/*
Represents a ZstdCompressionDict type.
Instances hold data used for a zstd compression dictionary.
*/
typedef struct {
PyObject_HEAD
/* Pointer to dictionary data. Owned by self. */
void* dictData;
/* Size of dictionary data. */
size_t dictSize;
ZSTD_dictContentType_e dictType;
/* k parameter for cover dictionaries. Only populated by train_cover_dict(). */
unsigned k;
/* d parameter for cover dictionaries. Only populated by train_cover_dict(). */
unsigned d;
/* Digested dictionary, suitable for reuse. */
ZSTD_CDict* cdict;
ZSTD_DDict* ddict;
} ZstdCompressionDict;
extern PyTypeObject ZstdCompressionDictType;
/*
Represents a ZstdCompressor type.
*/
typedef struct {
PyObject_HEAD
/* Number of threads to use for operations. */
unsigned int threads;
/* Pointer to compression dictionary to use. NULL if not using dictionary
compression. */
ZstdCompressionDict* dict;
/* Compression context to use. Populated during object construction. */
ZSTD_CCtx* cctx;
/* Compression parameters in use. */
ZSTD_CCtx_params* params;
} ZstdCompressor;
extern PyTypeObject ZstdCompressorType;
typedef struct {
PyObject_HEAD
ZstdCompressor* compressor;
ZSTD_outBuffer output;
int finished;
} ZstdCompressionObj;
extern PyTypeObject ZstdCompressionObjType;
typedef struct {
PyObject_HEAD
ZstdCompressor* compressor;
PyObject* writer;
unsigned long long sourceSize;
size_t outSize;
int entered;
unsigned long long bytesCompressed;
} ZstdCompressionWriter;
extern PyTypeObject ZstdCompressionWriterType;
typedef struct {
PyObject_HEAD
ZstdCompressor* compressor;
PyObject* reader;
Py_buffer buffer;
Py_ssize_t bufferOffset;
size_t inSize;
size_t outSize;
ZSTD_inBuffer input;
ZSTD_outBuffer output;
int finishedOutput;
int finishedInput;
PyObject* readResult;
} ZstdCompressorIterator;
extern PyTypeObject ZstdCompressorIteratorType;
typedef struct {
PyObject_HEAD
ZstdCompressor* compressor;
PyObject* reader;
Py_buffer buffer;
unsigned long long sourceSize;
size_t readSize;
int entered;
int closed;
unsigned long long bytesCompressed;
ZSTD_inBuffer input;
ZSTD_outBuffer output;
int finishedInput;
int finishedOutput;
PyObject* readResult;
} ZstdCompressionReader;
extern PyTypeObject ZstdCompressionReaderType;
typedef struct {
PyObject_HEAD
ZSTD_DCtx* dctx;
ZstdCompressionDict* dict;
size_t maxWindowSize;
ZSTD_format_e format;
} ZstdDecompressor;
extern PyTypeObject ZstdDecompressorType;
typedef struct {
PyObject_HEAD
ZstdDecompressor* decompressor;
size_t outSize;
int finished;
} ZstdDecompressionObj;
extern PyTypeObject ZstdDecompressionObjType;
typedef struct {
PyObject_HEAD
/* Parent decompressor to which this object is associated. */
ZstdDecompressor* decompressor;
/* Object to read() from (if reading from a stream). */
PyObject* reader;
/* Size for read() operations on reader. */
size_t readSize;
/* Buffer to read from (if reading from a buffer). */
Py_buffer buffer;
/* Whether the context manager is active. */
int entered;
/* Whether we've closed the stream. */
int closed;
/* Number of bytes decompressed and returned to user. */
unsigned long long bytesDecompressed;
/* Tracks data going into decompressor. */
ZSTD_inBuffer input;
/* Holds output from read() operation on reader. */
PyObject* readResult;
/* Whether all input has been sent to the decompressor. */
int finishedInput;
/* Whether all output has been flushed from the decompressor. */
int finishedOutput;
} ZstdDecompressionReader;
extern PyTypeObject ZstdDecompressionReaderType;
typedef struct {
PyObject_HEAD
ZstdDecompressor* decompressor;
PyObject* writer;
size_t outSize;
int entered;
} ZstdDecompressionWriter;
extern PyTypeObject ZstdDecompressionWriterType;
typedef struct {
PyObject_HEAD
ZstdDecompressor* decompressor;
PyObject* reader;
Py_buffer buffer;
Py_ssize_t bufferOffset;
size_t inSize;
size_t outSize;
size_t skipBytes;
ZSTD_inBuffer input;
ZSTD_outBuffer output;
Py_ssize_t readCount;
int finishedInput;
int finishedOutput;
} ZstdDecompressorIterator;
extern PyTypeObject ZstdDecompressorIteratorType;
typedef struct {
int errored;
PyObject* chunk;
} DecompressorIteratorResult;
typedef struct {
/* The public API is that these are 64-bit unsigned integers. So these can't
* be size_t, even though values larger than SIZE_MAX or PY_SSIZE_T_MAX may
* be nonsensical for this platform. */
unsigned long long offset;
unsigned long long length;
} BufferSegment;
typedef struct {
PyObject_HEAD
PyObject* parent;
BufferSegment* segments;
Py_ssize_t segmentCount;
} ZstdBufferSegments;
extern PyTypeObject ZstdBufferSegmentsType;
typedef struct {
PyObject_HEAD
PyObject* parent;
void* data;
Py_ssize_t dataSize;
unsigned long long offset;
} ZstdBufferSegment;
extern PyTypeObject ZstdBufferSegmentType;
typedef struct {
PyObject_HEAD
Py_buffer parent;
void* data;
unsigned long long dataSize;
BufferSegment* segments;
Py_ssize_t segmentCount;
int useFree;
} ZstdBufferWithSegments;
extern PyTypeObject ZstdBufferWithSegmentsType;
/**
* An ordered collection of BufferWithSegments exposed as a squashed collection.
*
* This type provides a virtual view spanning multiple BufferWithSegments
* instances. It allows multiple instances to be "chained" together and
* exposed as a single collection. e.g. if there are 2 buffers holding
* 10 segments each, then o[14] will access the 5th segment in the 2nd buffer.
*/
typedef struct {
PyObject_HEAD
/* An array of buffers that should be exposed through this instance. */
ZstdBufferWithSegments** buffers;
/* Number of elements in buffers array. */
Py_ssize_t bufferCount;
/* Array of first offset in each buffer instance. 0th entry corresponds
to number of elements in the 0th buffer. 1st entry corresponds to the
sum of elements in 0th and 1st buffers. */
Py_ssize_t* firstElements;
} ZstdBufferWithSegmentsCollection;
extern PyTypeObject ZstdBufferWithSegmentsCollectionType;
int set_parameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, unsigned value);
int set_parameters(ZSTD_CCtx_params* params, ZstdCompressionParametersObject* obj);
FrameParametersObject* get_frame_parameters(PyObject* self, PyObject* args, PyObject* kwargs);
int ensure_ddict(ZstdCompressionDict* dict);
int ensure_dctx(ZstdDecompressor* decompressor, int loadDict);
ZstdCompressionDict* train_dictionary(PyObject* self, PyObject* args, PyObject* kwargs);
ZstdBufferWithSegments* BufferWithSegments_FromMemory(void* data, unsigned long long dataSize, BufferSegment* segments, Py_ssize_t segmentsSize);
Py_ssize_t BufferWithSegmentsCollection_length(ZstdBufferWithSegmentsCollection*);
int cpu_count(void);
size_t roundpow2(size_t);
int safe_pybytes_resize(PyObject** obj, Py_ssize_t size);