##// END OF EJS Templates
relnotes: document automatically setting `HGPLAIN=1` for external hooks...
relnotes: document automatically setting `HGPLAIN=1` for external hooks Differential Revision: https://phab.mercurial-scm.org/D9629

File last commit:

r46647:88e741bf default
r46758:634cea2c default
Show More
node.rs
456 lines | 13.6 KiB | application/rls-services+xml | RustLexer
// Copyright 2019-2020 Georges Racinet <georges.racinet@octobus.net>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Definitions and utilities for Revision nodes
//!
//! In Mercurial code base, it is customary to call "a node" the binary SHA
//! of a revision.
use hex::{self, FromHex, FromHexError};
use std::convert::{TryFrom, TryInto};
/// The length in bytes of a `Node`
///
/// This constant is meant to ease refactors of this module, and
/// are private so that calling code does not expect all nodes have
/// the same size, should we support several formats concurrently in
/// the future.
pub const NODE_BYTES_LENGTH: usize = 20;
/// Id of the null node.
///
/// Used to indicate the absence of node.
pub const NULL_NODE_ID: [u8; NODE_BYTES_LENGTH] = [0u8; NODE_BYTES_LENGTH];
/// The length in bytes of a `Node`
///
/// see also `NODES_BYTES_LENGTH` about it being private.
const NODE_NYBBLES_LENGTH: usize = 2 * NODE_BYTES_LENGTH;
/// Private alias for readability and to ease future change
type NodeData = [u8; NODE_BYTES_LENGTH];
/// Binary revision SHA
///
/// ## Future changes of hash size
///
/// To accomodate future changes of hash size, Rust callers
/// should use the conversion methods at the boundaries (FFI, actual
/// computation of hashes and I/O) only, and only if required.
///
/// All other callers outside of unit tests should just handle `Node` values
/// and never make any assumption on the actual length, using [`nybbles_len`]
/// if they need a loop boundary.
///
/// All methods that create a `Node` either take a type that enforces
/// the size or fail immediately at runtime with [`ExactLengthRequired`].
///
/// [`nybbles_len`]: #method.nybbles_len
/// [`ExactLengthRequired`]: struct.NodeError#variant.ExactLengthRequired
#[derive(Clone, Debug, PartialEq)]
#[repr(transparent)]
pub struct Node {
data: NodeData,
}
/// The node value for NULL_REVISION
pub const NULL_NODE: Node = Node {
data: [0; NODE_BYTES_LENGTH],
};
impl From<NodeData> for Node {
fn from(data: NodeData) -> Node {
Node { data }
}
}
/// Return an error if the slice has an unexpected length
impl<'a> TryFrom<&'a [u8]> for &'a Node {
type Error = std::array::TryFromSliceError;
#[inline]
fn try_from(bytes: &'a [u8]) -> Result<&'a Node, Self::Error> {
let data = bytes.try_into()?;
// Safety: `#[repr(transparent)]` makes it ok to "wrap" the target
// of a reference to the type of the single field.
Ok(unsafe { std::mem::transmute::<&NodeData, &Node>(data) })
}
}
#[derive(Debug, PartialEq)]
pub enum NodeError {
ExactLengthRequired(usize, String),
PrefixTooLong(String),
HexError(FromHexError, String),
}
/// Low level utility function, also for prefixes
fn get_nybble(s: &[u8], i: usize) -> u8 {
if i % 2 == 0 {
s[i / 2] >> 4
} else {
s[i / 2] & 0x0f
}
}
impl Node {
/// Retrieve the `i`th half-byte of the binary data.
///
/// This is also the `i`th hexadecimal digit in numeric form,
/// also called a [nybble](https://en.wikipedia.org/wiki/Nibble).
pub fn get_nybble(&self, i: usize) -> u8 {
get_nybble(&self.data, i)
}
/// Length of the data, in nybbles
pub fn nybbles_len(&self) -> usize {
// public exposure as an instance method only, so that we can
// easily support several sizes of hashes if needed in the future.
NODE_NYBBLES_LENGTH
}
/// Convert from hexadecimal string representation
///
/// Exact length is required.
///
/// To be used in FFI and I/O only, in order to facilitate future
/// changes of hash format.
pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Node, NodeError> {
Ok(NodeData::from_hex(hex.as_ref())
.map_err(|e| NodeError::from((e, hex)))?
.into())
}
/// Convert to hexadecimal string representation
///
/// To be used in FFI and I/O only, in order to facilitate future
/// changes of hash format.
pub fn encode_hex(&self) -> String {
hex::encode(self.data)
}
/// Provide access to binary data
///
/// This is needed by FFI layers, for instance to return expected
/// binary values to Python.
pub fn as_bytes(&self) -> &[u8] {
&self.data
}
}
impl<T: AsRef<[u8]>> From<(FromHexError, T)> for NodeError {
fn from(err_offender: (FromHexError, T)) -> Self {
let (err, offender) = err_offender;
let offender = String::from_utf8_lossy(offender.as_ref()).into_owned();
match err {
FromHexError::InvalidStringLength => {
NodeError::ExactLengthRequired(NODE_NYBBLES_LENGTH, offender)
}
_ => NodeError::HexError(err, offender),
}
}
}
/// The beginning of a binary revision SHA.
///
/// Since it can potentially come from an hexadecimal representation with
/// odd length, it needs to carry around whether the last 4 bits are relevant
/// or not.
#[derive(Debug, PartialEq)]
pub struct NodePrefix {
buf: Vec<u8>,
is_odd: bool,
}
impl NodePrefix {
/// Convert from hexadecimal string representation
///
/// Similarly to `hex::decode`, can be used with Unicode string types
/// (`String`, `&str`) as well as bytes.
///
/// To be used in FFI and I/O only, in order to facilitate future
/// changes of hash format.
pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, NodeError> {
let hex = hex.as_ref();
let len = hex.len();
if len > NODE_NYBBLES_LENGTH {
return Err(NodeError::PrefixTooLong(
String::from_utf8_lossy(hex).to_owned().to_string(),
));
}
let is_odd = len % 2 == 1;
let even_part = if is_odd { &hex[..len - 1] } else { hex };
let mut buf: Vec<u8> =
Vec::from_hex(&even_part).map_err(|e| (e, hex))?;
if is_odd {
let latest_char = char::from(hex[len - 1]);
let latest_nybble = latest_char.to_digit(16).ok_or_else(|| {
(
FromHexError::InvalidHexCharacter {
c: latest_char,
index: len - 1,
},
hex,
)
})? as u8;
buf.push(latest_nybble << 4);
}
Ok(NodePrefix { buf, is_odd })
}
pub fn borrow(&self) -> NodePrefixRef {
NodePrefixRef {
buf: &self.buf,
is_odd: self.is_odd,
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct NodePrefixRef<'a> {
buf: &'a [u8],
is_odd: bool,
}
impl<'a> NodePrefixRef<'a> {
pub fn len(&self) -> usize {
if self.is_odd {
self.buf.len() * 2 - 1
} else {
self.buf.len() * 2
}
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn is_prefix_of(&self, node: &Node) -> bool {
if self.is_odd {
let buf = self.buf;
let last_pos = buf.len() - 1;
node.data.starts_with(buf.split_at(last_pos).0)
&& node.data[last_pos] >> 4 == buf[last_pos] >> 4
} else {
node.data.starts_with(self.buf)
}
}
/// Retrieve the `i`th half-byte from the prefix.
///
/// This is also the `i`th hexadecimal digit in numeric form,
/// also called a [nybble](https://en.wikipedia.org/wiki/Nibble).
pub fn get_nybble(&self, i: usize) -> u8 {
assert!(i < self.len());
get_nybble(self.buf, i)
}
/// Return the index first nybble that's different from `node`
///
/// If the return value is `None` that means that `self` is
/// a prefix of `node`, but the current method is a bit slower
/// than `is_prefix_of`.
///
/// Returned index is as in `get_nybble`, i.e., starting at 0.
pub fn first_different_nybble(&self, node: &Node) -> Option<usize> {
let buf = self.buf;
let until = if self.is_odd {
buf.len() - 1
} else {
buf.len()
};
for (i, item) in buf.iter().enumerate().take(until) {
if *item != node.data[i] {
return if *item & 0xf0 == node.data[i] & 0xf0 {
Some(2 * i + 1)
} else {
Some(2 * i)
};
}
}
if self.is_odd && buf[until] & 0xf0 != node.data[until] & 0xf0 {
Some(until * 2)
} else {
None
}
}
}
/// A shortcut for full `Node` references
impl<'a> From<&'a Node> for NodePrefixRef<'a> {
fn from(node: &'a Node) -> Self {
NodePrefixRef {
buf: &node.data,
is_odd: false,
}
}
}
impl PartialEq<Node> for NodePrefixRef<'_> {
fn eq(&self, other: &Node) -> bool {
!self.is_odd && self.buf == other.data
}
}
#[cfg(test)]
mod tests {
use super::*;
fn sample_node() -> Node {
let mut data = [0; NODE_BYTES_LENGTH];
data.copy_from_slice(&[
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba,
0x98, 0x76, 0x54, 0x32, 0x10, 0xde, 0xad, 0xbe, 0xef,
]);
data.into()
}
/// Pad an hexadecimal string to reach `NODE_NYBBLES_LENGTH`
///check_hash
/// The padding is made with zeros
pub fn hex_pad_right(hex: &str) -> String {
let mut res = hex.to_string();
while res.len() < NODE_NYBBLES_LENGTH {
res.push('0');
}
res
}
fn sample_node_hex() -> String {
hex_pad_right("0123456789abcdeffedcba9876543210deadbeef")
}
#[test]
fn test_node_from_hex() {
assert_eq!(Node::from_hex(&sample_node_hex()), Ok(sample_node()));
let mut short = hex_pad_right("0123");
short.pop();
short.pop();
assert_eq!(
Node::from_hex(&short),
Err(NodeError::ExactLengthRequired(NODE_NYBBLES_LENGTH, short)),
);
let not_hex = hex_pad_right("012... oops");
assert_eq!(
Node::from_hex(&not_hex),
Err(NodeError::HexError(
FromHexError::InvalidHexCharacter { c: '.', index: 3 },
not_hex,
)),
);
}
#[test]
fn test_node_encode_hex() {
assert_eq!(sample_node().encode_hex(), sample_node_hex());
}
#[test]
fn test_prefix_from_hex() -> Result<(), NodeError> {
assert_eq!(
NodePrefix::from_hex("0e1")?,
NodePrefix {
buf: vec![14, 16],
is_odd: true
}
);
assert_eq!(
NodePrefix::from_hex("0e1a")?,
NodePrefix {
buf: vec![14, 26],
is_odd: false
}
);
// checking limit case
let node_as_vec = sample_node().data.iter().cloned().collect();
assert_eq!(
NodePrefix::from_hex(sample_node_hex())?,
NodePrefix {
buf: node_as_vec,
is_odd: false
}
);
Ok(())
}
#[test]
fn test_prefix_from_hex_errors() {
assert_eq!(
NodePrefix::from_hex("testgr"),
Err(NodeError::HexError(
FromHexError::InvalidHexCharacter { c: 't', index: 0 },
"testgr".to_string()
))
);
let mut long = NULL_NODE.encode_hex();
long.push('c');
match NodePrefix::from_hex(&long)
.expect_err("should be refused as too long")
{
NodeError::PrefixTooLong(s) => assert_eq!(s, long),
err => panic!(format!("Should have been TooLong, got {:?}", err)),
}
}
#[test]
fn test_is_prefix_of() -> Result<(), NodeError> {
let mut node_data = [0; NODE_BYTES_LENGTH];
node_data[0] = 0x12;
node_data[1] = 0xca;
let node = Node::from(node_data);
assert!(NodePrefix::from_hex("12")?.borrow().is_prefix_of(&node));
assert!(!NodePrefix::from_hex("1a")?.borrow().is_prefix_of(&node));
assert!(NodePrefix::from_hex("12c")?.borrow().is_prefix_of(&node));
assert!(!NodePrefix::from_hex("12d")?.borrow().is_prefix_of(&node));
Ok(())
}
#[test]
fn test_get_nybble() -> Result<(), NodeError> {
let prefix = NodePrefix::from_hex("dead6789cafe")?;
assert_eq!(prefix.borrow().get_nybble(0), 13);
assert_eq!(prefix.borrow().get_nybble(7), 9);
Ok(())
}
#[test]
fn test_first_different_nybble_even_prefix() {
let prefix = NodePrefix::from_hex("12ca").unwrap();
let prefref = prefix.borrow();
let mut node = Node::from([0; NODE_BYTES_LENGTH]);
assert_eq!(prefref.first_different_nybble(&node), Some(0));
node.data[0] = 0x13;
assert_eq!(prefref.first_different_nybble(&node), Some(1));
node.data[0] = 0x12;
assert_eq!(prefref.first_different_nybble(&node), Some(2));
node.data[1] = 0xca;
// now it is a prefix
assert_eq!(prefref.first_different_nybble(&node), None);
}
#[test]
fn test_first_different_nybble_odd_prefix() {
let prefix = NodePrefix::from_hex("12c").unwrap();
let prefref = prefix.borrow();
let mut node = Node::from([0; NODE_BYTES_LENGTH]);
assert_eq!(prefref.first_different_nybble(&node), Some(0));
node.data[0] = 0x13;
assert_eq!(prefref.first_different_nybble(&node), Some(1));
node.data[0] = 0x12;
assert_eq!(prefref.first_different_nybble(&node), Some(2));
node.data[1] = 0xca;
// now it is a prefix
assert_eq!(prefref.first_different_nybble(&node), None);
}
}
#[cfg(test)]
pub use tests::hex_pad_right;