##// END OF EJS Templates
tests: enforce the use of `from __future__ import annotations`...
tests: enforce the use of `from __future__ import annotations` A recent MR and a separate recently landed MR that extracted code to a new file overlooked this, so I think it's worth flagging to ensure consistency. We don't enforce the import for empty files (like `__init__.py`). I'd rather this go into `import-checker.py`, but the import of interest only happens at the top of the file, and its `verify_modern_convention()` calls itself recursively as it transits the AST where the annotations might be. After a few hours of hacking on trying to get it to enforce the import, but only if annotations are used in the module (we generally don't have or check annotations in test files, so don't need this import), I gave up and resorted to this. It won't handle multi-line imports, but this isn't something I'd expect to change often, so this is good enough for now.

File last commit:

r47781:da4e6d7a default
r53246:662b08ac default
Show More
evolution.txt
56 lines | 2.1 KiB | text/plain | TextLexer
Obsolescence markers make it possible to mark changesets that have been
deleted or superseded in a new version of the changeset.
Unlike the previous way of handling such changes, by stripping the old
changesets from the repository, obsolescence markers can be propagated
between repositories. This allows for a safe and simple way of exchanging
mutable history and altering it after the fact. Changeset phases are
respected, such that only draft and secret changesets can be altered (see
:hg:`help phases` for details).
Obsolescence is tracked using "obsolescence markers", a piece of metadata
tracking which changesets have been made obsolete, potential successors for
a given changeset, the moment the changeset was marked as obsolete, and the
user who performed the rewriting operation. The markers are stored
separately from standard changeset data can be exchanged without any of the
precursor changesets, preventing unnecessary exchange of obsolescence data.
The complete set of obsolescence markers describes a history of changeset
modifications that is orthogonal to the repository history of file
modifications. This changeset history allows for detection and automatic
resolution of edge cases arising from multiple users rewriting the same part
of history concurrently.
Current feature status
======================
This feature is still in development.
Instability
===========
Rewriting changesets might introduce instability.
There are two main kinds of instability: orphaning and diverging.
Orphans are changesets left behind when their ancestors are rewritten.
Divergence has two variants:
* Content-divergence occurs when independent rewrites of the same changesets
lead to different results.
* Phase-divergence occurs when the old (obsolete) version of a changeset
becomes public.
It is possible to prevent local creation of orphans by using the following config::
[experimental]
evolution.createmarkers = true
evolution.exchange = true
You can also enable that option explicitly::
[experimental]
evolution.createmarkers = true
evolution.exchange = true
evolution.allowunstable = true