|
|
# profiling.py - profiling functions
|
|
|
#
|
|
|
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
|
|
|
#
|
|
|
# This software may be used and distributed according to the terms of the
|
|
|
# GNU General Public License version 2 or any later version.
|
|
|
|
|
|
from __future__ import absolute_import, print_function
|
|
|
|
|
|
import contextlib
|
|
|
import time
|
|
|
|
|
|
from .i18n import _
|
|
|
from . import (
|
|
|
error,
|
|
|
pycompat,
|
|
|
util,
|
|
|
)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
def lsprofile(ui, fp):
|
|
|
format = ui.config('profiling', 'format', default='text')
|
|
|
field = ui.config('profiling', 'sort', default='inlinetime')
|
|
|
limit = ui.configint('profiling', 'limit', default=30)
|
|
|
climit = ui.configint('profiling', 'nested', default=0)
|
|
|
|
|
|
if format not in ['text', 'kcachegrind']:
|
|
|
ui.warn(_("unrecognized profiling format '%s'"
|
|
|
" - Ignored\n") % format)
|
|
|
format = 'text'
|
|
|
|
|
|
try:
|
|
|
from . import lsprof
|
|
|
except ImportError:
|
|
|
raise error.Abort(_(
|
|
|
'lsprof not available - install from '
|
|
|
'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
|
|
|
p = lsprof.Profiler()
|
|
|
p.enable(subcalls=True)
|
|
|
try:
|
|
|
yield
|
|
|
finally:
|
|
|
p.disable()
|
|
|
|
|
|
if format == 'kcachegrind':
|
|
|
from . import lsprofcalltree
|
|
|
calltree = lsprofcalltree.KCacheGrind(p)
|
|
|
calltree.output(fp)
|
|
|
else:
|
|
|
# format == 'text'
|
|
|
stats = lsprof.Stats(p.getstats())
|
|
|
stats.sort(field)
|
|
|
stats.pprint(limit=limit, file=fp, climit=climit)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
def flameprofile(ui, fp):
|
|
|
try:
|
|
|
from flamegraph import flamegraph
|
|
|
except ImportError:
|
|
|
raise error.Abort(_(
|
|
|
'flamegraph not available - install from '
|
|
|
'https://github.com/evanhempel/python-flamegraph'))
|
|
|
# developer config: profiling.freq
|
|
|
freq = ui.configint('profiling', 'freq', default=1000)
|
|
|
filter_ = None
|
|
|
collapse_recursion = True
|
|
|
thread = flamegraph.ProfileThread(fp, 1.0 / freq,
|
|
|
filter_, collapse_recursion)
|
|
|
start_time = time.clock()
|
|
|
try:
|
|
|
thread.start()
|
|
|
yield
|
|
|
finally:
|
|
|
thread.stop()
|
|
|
thread.join()
|
|
|
print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
|
|
|
time.clock() - start_time, thread.num_frames(),
|
|
|
thread.num_frames(unique=True)))
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
def statprofile(ui, fp):
|
|
|
from . import statprof
|
|
|
|
|
|
freq = ui.configint('profiling', 'freq', default=1000)
|
|
|
if freq > 0:
|
|
|
# Cannot reset when profiler is already active. So silently no-op.
|
|
|
if statprof.state.profile_level == 0:
|
|
|
statprof.reset(freq)
|
|
|
else:
|
|
|
ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)
|
|
|
|
|
|
statprof.start(mechanism='thread')
|
|
|
|
|
|
try:
|
|
|
yield
|
|
|
finally:
|
|
|
data = statprof.stop()
|
|
|
|
|
|
profformat = ui.config('profiling', 'statformat', 'hotpath')
|
|
|
|
|
|
formats = {
|
|
|
'byline': statprof.DisplayFormats.ByLine,
|
|
|
'bymethod': statprof.DisplayFormats.ByMethod,
|
|
|
'hotpath': statprof.DisplayFormats.Hotpath,
|
|
|
'json': statprof.DisplayFormats.Json,
|
|
|
}
|
|
|
|
|
|
if profformat in formats:
|
|
|
displayformat = formats[profformat]
|
|
|
else:
|
|
|
ui.warn(_('unknown profiler output format: %s\n') % profformat)
|
|
|
displayformat = statprof.DisplayFormats.Hotpath
|
|
|
|
|
|
statprof.display(fp, data=data, format=displayformat)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
def profile(ui):
|
|
|
"""Start profiling.
|
|
|
|
|
|
Profiling is active when the context manager is active. When the context
|
|
|
manager exits, profiling results will be written to the configured output.
|
|
|
"""
|
|
|
profiler = pycompat.osgetenv('HGPROF')
|
|
|
if profiler is None:
|
|
|
profiler = ui.config('profiling', 'type', default='stat')
|
|
|
if profiler not in ('ls', 'stat', 'flame'):
|
|
|
ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler)
|
|
|
profiler = 'stat'
|
|
|
|
|
|
output = ui.config('profiling', 'output')
|
|
|
|
|
|
if output == 'blackbox':
|
|
|
fp = util.stringio()
|
|
|
elif output:
|
|
|
path = ui.expandpath(output)
|
|
|
fp = open(path, 'wb')
|
|
|
else:
|
|
|
fp = ui.ferr
|
|
|
|
|
|
try:
|
|
|
if profiler == 'ls':
|
|
|
proffn = lsprofile
|
|
|
elif profiler == 'flame':
|
|
|
proffn = flameprofile
|
|
|
else:
|
|
|
proffn = statprofile
|
|
|
|
|
|
with proffn(ui, fp):
|
|
|
yield
|
|
|
|
|
|
finally:
|
|
|
if output:
|
|
|
if output == 'blackbox':
|
|
|
val = 'Profile:\n%s' % fp.getvalue()
|
|
|
# ui.log treats the input as a format string,
|
|
|
# so we need to escape any % signs.
|
|
|
val = val.replace('%', '%%')
|
|
|
ui.log('profile', val)
|
|
|
fp.close()
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
def maybeprofile(ui):
|
|
|
"""Profile if enabled, else do nothing.
|
|
|
|
|
|
This context manager can be used to optionally profile if profiling
|
|
|
is enabled. Otherwise, it does nothing.
|
|
|
|
|
|
The purpose of this context manager is to make calling code simpler:
|
|
|
just use a single code path for calling into code you may want to profile
|
|
|
and this function determines whether to start profiling.
|
|
|
"""
|
|
|
if ui.configbool('profiling', 'enabled'):
|
|
|
with profile(ui):
|
|
|
yield
|
|
|
else:
|
|
|
yield
|
|
|
|