##// END OF EJS Templates
rust-pyo3: implementation of LazyAncestors...
rust-pyo3: implementation of LazyAncestors There is a difference in the implementaion of `__contains__` between PyO3 and rust-cpython: if the specified signature in Rust code is for a precise type (e.g., `PyRevision`) rust-cpython would automatically convert the potential resulting `TypeError` into `Ok(false)`, whereas PyO3 let it bubble up. Hence we treat the case manually and add it to the common test. In Mercurial Python code, `None in` for a `LazyAncestors` object can really happens, namely in this lambda from `discover._postprocessobsolete`: ``` ispushed = lambda n: torev(n) in futurecommon ``` This lambda can get called with `n` such that `torev(n)` is `False` (seen in `test-bookmarks-push-pull.t`).

File last commit:

r44446:de783805 default
r53430:6b694bdf default
Show More
zstd.c
343 lines | 9.7 KiB | text/x-c | CLexer
/**
* Copyright (c) 2016-present, Gregory Szorc
* All rights reserved.
*
* This software may be modified and distributed under the terms
* of the BSD license. See the LICENSE file for details.
*/
/* A Python C extension for Zstandard. */
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#elif defined(__APPLE__) || defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif
#include "python-zstandard.h"
PyObject *ZstdError;
PyDoc_STRVAR(estimate_decompression_context_size__doc__,
"estimate_decompression_context_size()\n"
"\n"
"Estimate the amount of memory allocated to a decompression context.\n"
);
static PyObject* estimate_decompression_context_size(PyObject* self) {
return PyLong_FromSize_t(ZSTD_estimateDCtxSize());
}
PyDoc_STRVAR(frame_content_size__doc__,
"frame_content_size(data)\n"
"\n"
"Obtain the decompressed size of a frame."
);
static PyObject* frame_content_size(PyObject* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = {
"source",
NULL
};
Py_buffer source;
PyObject* result = NULL;
unsigned long long size;
#if PY_MAJOR_VERSION >= 3
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "y*:frame_content_size",
#else
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "s*:frame_content_size",
#endif
kwlist, &source)) {
return NULL;
}
if (!PyBuffer_IsContiguous(&source, 'C') || source.ndim > 1) {
PyErr_SetString(PyExc_ValueError,
"data buffer should be contiguous and have at most one dimension");
goto finally;
}
size = ZSTD_getFrameContentSize(source.buf, source.len);
if (size == ZSTD_CONTENTSIZE_ERROR) {
PyErr_SetString(ZstdError, "error when determining content size");
}
else if (size == ZSTD_CONTENTSIZE_UNKNOWN) {
result = PyLong_FromLong(-1);
}
else {
result = PyLong_FromUnsignedLongLong(size);
}
finally:
PyBuffer_Release(&source);
return result;
}
PyDoc_STRVAR(frame_header_size__doc__,
"frame_header_size(data)\n"
"\n"
"Obtain the size of a frame header.\n"
);
static PyObject* frame_header_size(PyObject* self, PyObject* args, PyObject* kwargs) {
static char* kwlist[] = {
"source",
NULL
};
Py_buffer source;
PyObject* result = NULL;
size_t zresult;
#if PY_MAJOR_VERSION >= 3
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "y*:frame_header_size",
#else
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "s*:frame_header_size",
#endif
kwlist, &source)) {
return NULL;
}
if (!PyBuffer_IsContiguous(&source, 'C') || source.ndim > 1) {
PyErr_SetString(PyExc_ValueError,
"data buffer should be contiguous and have at most one dimension");
goto finally;
}
zresult = ZSTD_frameHeaderSize(source.buf, source.len);
if (ZSTD_isError(zresult)) {
PyErr_Format(ZstdError, "could not determine frame header size: %s",
ZSTD_getErrorName(zresult));
}
else {
result = PyLong_FromSize_t(zresult);
}
finally:
PyBuffer_Release(&source);
return result;
}
PyDoc_STRVAR(get_frame_parameters__doc__,
"get_frame_parameters(data)\n"
"\n"
"Obtains a ``FrameParameters`` instance by parsing data.\n");
PyDoc_STRVAR(train_dictionary__doc__,
"train_dictionary(dict_size, samples, k=None, d=None, steps=None,\n"
" threads=None,notifications=0, dict_id=0, level=0)\n"
"\n"
"Train a dictionary from sample data using the COVER algorithm.\n"
"\n"
"A compression dictionary of size ``dict_size`` will be created from the\n"
"iterable of ``samples``. The raw dictionary bytes will be returned.\n"
"\n"
"The COVER algorithm has 2 parameters: ``k`` and ``d``. These control the\n"
"*segment size* and *dmer size*. A reasonable range for ``k`` is\n"
"``[16, 2048+]``. A reasonable range for ``d`` is ``[6, 16]``.\n"
"``d`` must be less than or equal to ``k``.\n"
"\n"
"``steps`` can be specified to control the number of steps through potential\n"
"values of ``k`` and ``d`` to try. ``k`` and ``d`` will only be varied if\n"
"those arguments are not defined. i.e. if ``d`` is ``8``, then only ``k``\n"
"will be varied in this mode.\n"
"\n"
"``threads`` can specify how many threads to use to test various ``k`` and\n"
"``d`` values. ``-1`` will use as many threads as available CPUs. By default,\n"
"a single thread is used.\n"
"\n"
"When ``k`` and ``d`` are not defined, default values are used and the\n"
"algorithm will perform multiple iterations - or steps - to try to find\n"
"ideal parameters. If both ``k`` and ``d`` are specified, then those values\n"
"will be used. ``steps`` or ``threads`` triggers optimization mode to test\n"
"multiple ``k`` and ``d`` variations.\n"
);
static char zstd_doc[] = "Interface to zstandard";
static PyMethodDef zstd_methods[] = {
{ "estimate_decompression_context_size", (PyCFunction)estimate_decompression_context_size,
METH_NOARGS, estimate_decompression_context_size__doc__ },
{ "frame_content_size", (PyCFunction)frame_content_size,
METH_VARARGS | METH_KEYWORDS, frame_content_size__doc__ },
{ "frame_header_size", (PyCFunction)frame_header_size,
METH_VARARGS | METH_KEYWORDS, frame_header_size__doc__ },
{ "get_frame_parameters", (PyCFunction)get_frame_parameters,
METH_VARARGS | METH_KEYWORDS, get_frame_parameters__doc__ },
{ "train_dictionary", (PyCFunction)train_dictionary,
METH_VARARGS | METH_KEYWORDS, train_dictionary__doc__ },
{ NULL, NULL }
};
void bufferutil_module_init(PyObject* mod);
void compressobj_module_init(PyObject* mod);
void compressor_module_init(PyObject* mod);
void compressionparams_module_init(PyObject* mod);
void constants_module_init(PyObject* mod);
void compressionchunker_module_init(PyObject* mod);
void compressiondict_module_init(PyObject* mod);
void compressionreader_module_init(PyObject* mod);
void compressionwriter_module_init(PyObject* mod);
void compressoriterator_module_init(PyObject* mod);
void decompressor_module_init(PyObject* mod);
void decompressobj_module_init(PyObject* mod);
void decompressionreader_module_init(PyObject *mod);
void decompressionwriter_module_init(PyObject* mod);
void decompressoriterator_module_init(PyObject* mod);
void frameparams_module_init(PyObject* mod);
void zstd_module_init(PyObject* m) {
/* python-zstandard relies on unstable zstd C API features. This means
that changes in zstd may break expectations in python-zstandard.
python-zstandard is distributed with a copy of the zstd sources.
python-zstandard is only guaranteed to work with the bundled version
of zstd.
However, downstream redistributors or packagers may unbundle zstd
from python-zstandard. This can result in a mismatch between zstd
versions and API semantics. This essentially "voids the warranty"
of python-zstandard and may cause undefined behavior.
We detect this mismatch here and refuse to load the module if this
scenario is detected.
*/
if (ZSTD_VERSION_NUMBER != 10404 || ZSTD_versionNumber() != 10404) {
PyErr_SetString(PyExc_ImportError, "zstd C API mismatch; Python bindings not compiled against expected zstd version");
return;
}
bufferutil_module_init(m);
compressionparams_module_init(m);
compressiondict_module_init(m);
compressobj_module_init(m);
compressor_module_init(m);
compressionchunker_module_init(m);
compressionreader_module_init(m);
compressionwriter_module_init(m);
compressoriterator_module_init(m);
constants_module_init(m);
decompressor_module_init(m);
decompressobj_module_init(m);
decompressionreader_module_init(m);
decompressionwriter_module_init(m);
decompressoriterator_module_init(m);
frameparams_module_init(m);
}
#if defined(__GNUC__) && (__GNUC__ >= 4)
# define PYTHON_ZSTD_VISIBILITY __attribute__ ((visibility ("default")))
#else
# define PYTHON_ZSTD_VISIBILITY
#endif
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef zstd_module = {
PyModuleDef_HEAD_INIT,
"zstd",
zstd_doc,
-1,
zstd_methods
};
PYTHON_ZSTD_VISIBILITY PyMODINIT_FUNC PyInit_zstd(void) {
PyObject *m = PyModule_Create(&zstd_module);
if (m) {
zstd_module_init(m);
if (PyErr_Occurred()) {
Py_DECREF(m);
m = NULL;
}
}
return m;
}
#else
PYTHON_ZSTD_VISIBILITY PyMODINIT_FUNC initzstd(void) {
PyObject *m = Py_InitModule3("zstd", zstd_methods, zstd_doc);
if (m) {
zstd_module_init(m);
}
}
#endif
/* Attempt to resolve the number of CPUs in the system. */
int cpu_count() {
int count = 0;
#if defined(_WIN32)
SYSTEM_INFO si;
si.dwNumberOfProcessors = 0;
GetSystemInfo(&si);
count = si.dwNumberOfProcessors;
#elif defined(__APPLE__)
int num;
size_t size = sizeof(int);
if (0 == sysctlbyname("hw.logicalcpu", &num, &size, NULL, 0)) {
count = num;
}
#elif defined(__linux__)
count = sysconf(_SC_NPROCESSORS_ONLN);
#elif defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
int mib[2];
size_t len = sizeof(count);
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
if (0 != sysctl(mib, 2, &count, &len, NULL, 0)) {
count = 0;
}
#elif defined(__hpux)
count = mpctl(MPC_GETNUMSPUS, NULL, NULL);
#endif
return count;
}
size_t roundpow2(size_t i) {
i--;
i |= i >> 1;
i |= i >> 2;
i |= i >> 4;
i |= i >> 8;
i |= i >> 16;
i++;
return i;
}
/* Safer version of _PyBytes_Resize().
*
* _PyBytes_Resize() only works if the refcount is 1. In some scenarios,
* we can get an object with a refcount > 1, even if it was just created
* with PyBytes_FromStringAndSize()! That's because (at least) CPython
* pre-allocates PyBytes instances of size 1 for every possible byte value.
*
* If non-0 is returned, obj may or may not be NULL.
*/
int safe_pybytes_resize(PyObject** obj, Py_ssize_t size) {
PyObject* tmp;
if ((*obj)->ob_refcnt == 1) {
return _PyBytes_Resize(obj, size);
}
tmp = PyBytes_FromStringAndSize(NULL, size);
if (!tmp) {
return -1;
}
memcpy(PyBytes_AS_STRING(tmp), PyBytes_AS_STRING(*obj),
PyBytes_GET_SIZE(*obj));
Py_DECREF(*obj);
*obj = tmp;
return 0;
}