##// END OF EJS Templates
scmutil: make shortest() respect disambiguation revset...
scmutil: make shortest() respect disambiguation revset The previous patch would let you use a shorter prefix if the prefix is unique within a configured revset. However, that's not very useful if there's no simple way of knowing what that shorter prefix is. This patch adapts the shortest() template function to use the shorter prefixes for nodes in the configured revset. This is currently extremely slow, because it calculates the revset for each call to shortest(). To make this faster, the next patch will start caching the revset instance. Ideally we'd cache a prefix tree instance instead. Differential Revision: https://phab.mercurial-scm.org/D4038

File last commit:

r36644:6754d0c5 default
r38879:6f7c9527 default
Show More
test-ancestor.py
275 lines | 8.7 KiB | text/x-python | PythonLexer
from __future__ import absolute_import, print_function
import binascii
import getopt
import math
import os
import random
import sys
import time
from mercurial.node import nullrev
from mercurial import (
ancestor,
debugcommands,
hg,
pycompat,
ui as uimod,
util,
)
if pycompat.ispy3:
long = int
xrange = range
def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7):
'''nodes: total number of nodes in the graph
rootprob: probability that a new node (not 0) will be a root
mergeprob: probability that, excluding a root a node will be a merge
prevprob: probability that p1 will be the previous node
return value is a graph represented as an adjacency list.
'''
graph = [None] * nodes
for i in xrange(nodes):
if i == 0 or rng.random() < rootprob:
graph[i] = [nullrev]
elif i == 1:
graph[i] = [0]
elif rng.random() < mergeprob:
if i == 2 or rng.random() < prevprob:
# p1 is prev
p1 = i - 1
else:
p1 = rng.randrange(i - 1)
p2 = rng.choice(list(range(0, p1)) + list(range(p1 + 1, i)))
graph[i] = [p1, p2]
elif rng.random() < prevprob:
graph[i] = [i - 1]
else:
graph[i] = [rng.randrange(i - 1)]
return graph
def buildancestorsets(graph):
ancs = [None] * len(graph)
for i in xrange(len(graph)):
ancs[i] = {i}
if graph[i] == [nullrev]:
continue
for p in graph[i]:
ancs[i].update(ancs[p])
return ancs
class naiveincrementalmissingancestors(object):
def __init__(self, ancs, bases):
self.ancs = ancs
self.bases = set(bases)
def addbases(self, newbases):
self.bases.update(newbases)
def removeancestorsfrom(self, revs):
for base in self.bases:
if base != nullrev:
revs.difference_update(self.ancs[base])
revs.discard(nullrev)
def missingancestors(self, revs):
res = set()
for rev in revs:
if rev != nullrev:
res.update(self.ancs[rev])
for base in self.bases:
if base != nullrev:
res.difference_update(self.ancs[base])
return sorted(res)
def test_missingancestors(seed, rng):
# empirically observed to take around 1 second
graphcount = 100
testcount = 10
inccount = 10
nerrs = [0]
# the default mu and sigma give us a nice distribution of mostly
# single-digit counts (including 0) with some higher ones
def lognormrandom(mu, sigma):
return int(math.floor(rng.lognormvariate(mu, sigma)))
def samplerevs(nodes, mu=1.1, sigma=0.8):
count = min(lognormrandom(mu, sigma), len(nodes))
return rng.sample(nodes, count)
def err(seed, graph, bases, seq, output, expected):
if nerrs[0] == 0:
print('seed:', hex(seed)[:-1], file=sys.stderr)
if gerrs[0] == 0:
print('graph:', graph, file=sys.stderr)
print('* bases:', bases, file=sys.stderr)
print('* seq: ', seq, file=sys.stderr)
print('* output: ', output, file=sys.stderr)
print('* expected:', expected, file=sys.stderr)
nerrs[0] += 1
gerrs[0] += 1
for g in xrange(graphcount):
graph = buildgraph(rng)
ancs = buildancestorsets(graph)
gerrs = [0]
for _ in xrange(testcount):
# start from nullrev to include it as a possibility
graphnodes = range(nullrev, len(graph))
bases = samplerevs(graphnodes)
# fast algorithm
inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases)
# reference slow algorithm
naiveinc = naiveincrementalmissingancestors(ancs, bases)
seq = []
revs = []
for _ in xrange(inccount):
if rng.random() < 0.2:
newbases = samplerevs(graphnodes)
seq.append(('addbases', newbases))
inc.addbases(newbases)
naiveinc.addbases(newbases)
if rng.random() < 0.4:
# larger set so that there are more revs to remove from
revs = samplerevs(graphnodes, mu=1.5)
seq.append(('removeancestorsfrom', revs))
hrevs = set(revs)
rrevs = set(revs)
inc.removeancestorsfrom(hrevs)
naiveinc.removeancestorsfrom(rrevs)
if hrevs != rrevs:
err(seed, graph, bases, seq, sorted(hrevs),
sorted(rrevs))
else:
revs = samplerevs(graphnodes)
seq.append(('missingancestors', revs))
h = inc.missingancestors(revs)
r = naiveinc.missingancestors(revs)
if h != r:
err(seed, graph, bases, seq, h, r)
# graph is a dict of child->parent adjacency lists for this graph:
# o 13
# |
# | o 12
# | |
# | | o 11
# | | |\
# | | | | o 10
# | | | | |
# | o---+ | 9
# | | | | |
# o | | | | 8
# / / / /
# | | o | 7
# | | | |
# o---+ | 6
# / / /
# | | o 5
# | |/
# | o 4
# | |
# o | 3
# | |
# | o 2
# |/
# o 1
# |
# o 0
graph = {0: [-1], 1: [0], 2: [1], 3: [1], 4: [2], 5: [4], 6: [4],
7: [4], 8: [-1], 9: [6, 7], 10: [5], 11: [3, 7], 12: [9],
13: [8]}
def genlazyancestors(revs, stoprev=0, inclusive=False):
print(("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" %
(revs, stoprev, inclusive)))
return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev,
inclusive=inclusive)
def printlazyancestors(s, l):
print('membership: %r' % [n for n in l if n in s])
print('iteration: %r' % list(s))
def test_lazyancestors():
# Empty revs
s = genlazyancestors([])
printlazyancestors(s, [3, 0, -1])
# Standard example
s = genlazyancestors([11, 13])
printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
# Standard with ancestry in the initial set (1 is ancestor of 3)
s = genlazyancestors([1, 3])
printlazyancestors(s, [1, -1, 0])
# Including revs
s = genlazyancestors([11, 13], inclusive=True)
printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
# Test with stoprev
s = genlazyancestors([11, 13], stoprev=6)
printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
s = genlazyancestors([11, 13], stoprev=6, inclusive=True)
printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
# The C gca algorithm requires a real repo. These are textual descriptions of
# DAGs that have been known to be problematic, and, optionally, known pairs
# of revisions and their expected ancestor list.
dagtests = [
(b'+2*2*2/*3/2', {}),
(b'+3*3/*2*2/*4*4/*4/2*4/2*2', {}),
(b'+2*2*/2*4*/4*/3*2/4', {(6, 7): [3, 5]}),
]
def test_gca():
u = uimod.ui.load()
for i, (dag, tests) in enumerate(dagtests):
repo = hg.repository(u, b'gca%d' % i, create=1)
cl = repo.changelog
if not util.safehasattr(cl.index, 'ancestors'):
# C version not available
return
debugcommands.debugbuilddag(u, repo, dag)
# Compare the results of the Python and C versions. This does not
# include choosing a winner when more than one gca exists -- we make
# sure both return exactly the same set of gcas.
# Also compare against expected results, if available.
for a in cl:
for b in cl:
cgcas = sorted(cl.index.ancestors(a, b))
pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b))
expected = None
if (a, b) in tests:
expected = tests[(a, b)]
if cgcas != pygcas or (expected and cgcas != expected):
print("test_gca: for dag %s, gcas for %d, %d:"
% (dag, a, b))
print(" C returned: %s" % cgcas)
print(" Python returned: %s" % pygcas)
if expected:
print(" expected: %s" % expected)
def main():
seed = None
opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed='])
for o, a in opts:
if o in ('-s', '--seed'):
seed = long(a, base=0) # accepts base 10 or 16 strings
if seed is None:
try:
seed = long(binascii.hexlify(os.urandom(16)), 16)
except AttributeError:
seed = long(time.time() * 1000)
rng = random.Random(seed)
test_missingancestors(seed, rng)
test_lazyancestors()
test_gca()
if __name__ == '__main__':
main()