##// END OF EJS Templates
run-tests: use the same python version for shebang lines on Windows...
run-tests: use the same python version for shebang lines on Windows The latest py3 is used if the minor number isn't specified. After running the script to install all of the build dependencies, that moved the default from 3.8 to 3.9 on the CI system. That in turn caused a bunch of tests to be skipped that were running prior, even when the test runner was invoked with `py -3.8`. While we should almost always use the latest version, we really shouldn't make it hard to test different versions or allow things to randomly break in subtle ways like that. Differential Revision: https://phab.mercurial-scm.org/D10702

File last commit:

r44253:01ec70a8 default
r47953:6f976d54 default
Show More
standalone_fuzz_target_runner.cc
45 lines | 1.5 KiB | text/x-c | CppLexer
/ contrib / fuzz / standalone_fuzz_target_runner.cc
// Copyright 2017 Google Inc. All Rights Reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// Example of a standalone runner for "fuzz targets".
// It reads all files passed as parameters and feeds their contents
// one by one into the fuzz target (LLVMFuzzerTestOneInput).
// This runner does not do any fuzzing, but allows us to run the fuzz target
// on the test corpus (e.g. "do_stuff_test_data") or on a single file,
// e.g. the one that comes from a bug report.
#include <cassert>
#include <fstream>
#include <iostream>
#include <vector>
// Forward declare the "fuzz target" interface.
// We deliberately keep this inteface simple and header-free.
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size);
extern "C" int LLVMFuzzerInitialize(int *argc, char ***argv);
int main(int argc, char **argv)
{
LLVMFuzzerInitialize(&argc, &argv);
for (int i = 1; i < argc; i++) {
std::ifstream in(argv[i]);
in.seekg(0, in.end);
size_t length = in.tellg();
in.seekg(0, in.beg);
std::cout << "Reading " << length << " bytes from " << argv[i]
<< std::endl;
// Allocate exactly length bytes so that we reliably catch
// buffer overflows.
std::vector<char> bytes(length);
in.read(bytes.data(), bytes.size());
assert(in);
LLVMFuzzerTestOneInput(
reinterpret_cast<const uint8_t *>(bytes.data()),
bytes.size());
std::cout << "Execution successful" << std::endl;
}
return 0;
}
// no-check-code since this is from a third party