##// END OF EJS Templates
packaging: fix path where .deb files are looked for...
packaging: fix path where .deb files are looked for In builddeb script, the path where .deb files are looked for should simply be $OUTPUTDIR since the previous instruction moves those files there. This fixes "make deb".

File last commit:

r43207:69de49c4 default
r43617:734407c4 stable
Show More
zstdmt_compress.c
2110 lines | 90.2 KiB | text/x-c | CLexer
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
/* ====== Constants ====== */
#define ZSTDMT_OVERLAPLOG_DEFAULT 0
/* ====== Dependencies ====== */
#include <string.h> /* memcpy, memset */
#include <limits.h> /* INT_MAX, UINT_MAX */
#include "mem.h" /* MEM_STATIC */
#include "pool.h" /* threadpool */
#include "threading.h" /* mutex */
#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
#include "zstd_ldm.h"
#include "zstdmt_compress.h"
/* Guards code to support resizing the SeqPool.
* We will want to resize the SeqPool to save memory in the future.
* Until then, comment the code out since it is unused.
*/
#define ZSTD_RESIZE_SEQPOOL 0
/* ====== Debug ====== */
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
&& !defined(_MSC_VER) \
&& !defined(__MINGW32__)
# include <stdio.h>
# include <unistd.h>
# include <sys/times.h>
# define DEBUG_PRINTHEX(l,p,n) { \
unsigned debug_u; \
for (debug_u=0; debug_u<(n); debug_u++) \
RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
RAWLOG(l, " \n"); \
}
static unsigned long long GetCurrentClockTimeMicroseconds(void)
{
static clock_t _ticksPerSecond = 0;
if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
{ struct tms junk; clock_t newTicks = (clock_t) times(&junk);
return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
} }
#define MUTEX_WAIT_TIME_DLEVEL 6
#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \
if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \
unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
ZSTD_pthread_mutex_lock(mutex); \
{ unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
unsigned long long const elapsedTime = (afterTime-beforeTime); \
if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \
DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
elapsedTime, #mutex); \
} } \
} else { \
ZSTD_pthread_mutex_lock(mutex); \
} \
}
#else
# define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
# define DEBUG_PRINTHEX(l,p,n) {}
#endif
/* ===== Buffer Pool ===== */
/* a single Buffer Pool can be invoked from multiple threads in parallel */
typedef struct buffer_s {
void* start;
size_t capacity;
} buffer_t;
static const buffer_t g_nullBuffer = { NULL, 0 };
typedef struct ZSTDMT_bufferPool_s {
ZSTD_pthread_mutex_t poolMutex;
size_t bufferSize;
unsigned totalBuffers;
unsigned nbBuffers;
ZSTD_customMem cMem;
buffer_t bTable[1]; /* variable size */
} ZSTDMT_bufferPool;
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem)
{
unsigned const maxNbBuffers = 2*nbWorkers + 3;
ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_calloc(
sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
if (bufPool==NULL) return NULL;
if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
ZSTD_free(bufPool, cMem);
return NULL;
}
bufPool->bufferSize = 64 KB;
bufPool->totalBuffers = maxNbBuffers;
bufPool->nbBuffers = 0;
bufPool->cMem = cMem;
return bufPool;
}
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
{
unsigned u;
DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
if (!bufPool) return; /* compatibility with free on NULL */
for (u=0; u<bufPool->totalBuffers; u++) {
DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
ZSTD_free(bufPool->bTable[u].start, bufPool->cMem);
}
ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
ZSTD_free(bufPool, bufPool->cMem);
}
/* only works at initialization, not during compression */
static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
{
size_t const poolSize = sizeof(*bufPool)
+ (bufPool->totalBuffers - 1) * sizeof(buffer_t);
unsigned u;
size_t totalBufferSize = 0;
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
for (u=0; u<bufPool->totalBuffers; u++)
totalBufferSize += bufPool->bTable[u].capacity;
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
return poolSize + totalBufferSize;
}
/* ZSTDMT_setBufferSize() :
* all future buffers provided by this buffer pool will have _at least_ this size
* note : it's better for all buffers to have same size,
* as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
{
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
bufPool->bufferSize = bSize;
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
}
static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers)
{
unsigned const maxNbBuffers = 2*nbWorkers + 3;
if (srcBufPool==NULL) return NULL;
if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
return srcBufPool;
/* need a larger buffer pool */
{ ZSTD_customMem const cMem = srcBufPool->cMem;
size_t const bSize = srcBufPool->bufferSize; /* forward parameters */
ZSTDMT_bufferPool* newBufPool;
ZSTDMT_freeBufferPool(srcBufPool);
newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
if (newBufPool==NULL) return newBufPool;
ZSTDMT_setBufferSize(newBufPool, bSize);
return newBufPool;
}
}
/** ZSTDMT_getBuffer() :
* assumption : bufPool must be valid
* @return : a buffer, with start pointer and size
* note: allocation may fail, in this case, start==NULL and size==0 */
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
{
size_t const bSize = bufPool->bufferSize;
DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
if (bufPool->nbBuffers) { /* try to use an existing buffer */
buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
size_t const availBufferSize = buf.capacity;
bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
/* large enough, but not too much */
DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
bufPool->nbBuffers, (U32)buf.capacity);
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
return buf;
}
/* size conditions not respected : scratch this buffer, create new one */
DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
ZSTD_free(buf.start, bufPool->cMem);
}
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
/* create new buffer */
DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
{ buffer_t buffer;
void* const start = ZSTD_malloc(bSize, bufPool->cMem);
buffer.start = start; /* note : start can be NULL if malloc fails ! */
buffer.capacity = (start==NULL) ? 0 : bSize;
if (start==NULL) {
DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
} else {
DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
}
return buffer;
}
}
#if ZSTD_RESIZE_SEQPOOL
/** ZSTDMT_resizeBuffer() :
* assumption : bufPool must be valid
* @return : a buffer that is at least the buffer pool buffer size.
* If a reallocation happens, the data in the input buffer is copied.
*/
static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
{
size_t const bSize = bufPool->bufferSize;
if (buffer.capacity < bSize) {
void* const start = ZSTD_malloc(bSize, bufPool->cMem);
buffer_t newBuffer;
newBuffer.start = start;
newBuffer.capacity = start == NULL ? 0 : bSize;
if (start != NULL) {
assert(newBuffer.capacity >= buffer.capacity);
memcpy(newBuffer.start, buffer.start, buffer.capacity);
DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
return newBuffer;
}
DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
}
return buffer;
}
#endif
/* store buffer for later re-use, up to pool capacity */
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
{
DEBUGLOG(5, "ZSTDMT_releaseBuffer");
if (buf.start == NULL) return; /* compatible with release on NULL */
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
if (bufPool->nbBuffers < bufPool->totalBuffers) {
bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */
DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
(U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
return;
}
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
/* Reached bufferPool capacity (should not happen) */
DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
ZSTD_free(buf.start, bufPool->cMem);
}
/* ===== Seq Pool Wrapper ====== */
static rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0};
typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
{
return ZSTDMT_sizeof_bufferPool(seqPool);
}
static rawSeqStore_t bufferToSeq(buffer_t buffer)
{
rawSeqStore_t seq = {NULL, 0, 0, 0};
seq.seq = (rawSeq*)buffer.start;
seq.capacity = buffer.capacity / sizeof(rawSeq);
return seq;
}
static buffer_t seqToBuffer(rawSeqStore_t seq)
{
buffer_t buffer;
buffer.start = seq.seq;
buffer.capacity = seq.capacity * sizeof(rawSeq);
return buffer;
}
static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
{
if (seqPool->bufferSize == 0) {
return kNullRawSeqStore;
}
return bufferToSeq(ZSTDMT_getBuffer(seqPool));
}
#if ZSTD_RESIZE_SEQPOOL
static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
{
return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
}
#endif
static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
{
ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
}
static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
{
ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
}
static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
{
ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
if (seqPool == NULL) return NULL;
ZSTDMT_setNbSeq(seqPool, 0);
return seqPool;
}
static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
{
ZSTDMT_freeBufferPool(seqPool);
}
static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
{
return ZSTDMT_expandBufferPool(pool, nbWorkers);
}
/* ===== CCtx Pool ===== */
/* a single CCtx Pool can be invoked from multiple threads in parallel */
typedef struct {
ZSTD_pthread_mutex_t poolMutex;
int totalCCtx;
int availCCtx;
ZSTD_customMem cMem;
ZSTD_CCtx* cctx[1]; /* variable size */
} ZSTDMT_CCtxPool;
/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
{
int cid;
for (cid=0; cid<pool->totalCCtx; cid++)
ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */
ZSTD_pthread_mutex_destroy(&pool->poolMutex);
ZSTD_free(pool, pool->cMem);
}
/* ZSTDMT_createCCtxPool() :
* implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
ZSTD_customMem cMem)
{
ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_calloc(
sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
assert(nbWorkers > 0);
if (!cctxPool) return NULL;
if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
ZSTD_free(cctxPool, cMem);
return NULL;
}
cctxPool->cMem = cMem;
cctxPool->totalCCtx = nbWorkers;
cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */
cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
return cctxPool;
}
static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
int nbWorkers)
{
if (srcPool==NULL) return NULL;
if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */
/* need a larger cctx pool */
{ ZSTD_customMem const cMem = srcPool->cMem;
ZSTDMT_freeCCtxPool(srcPool);
return ZSTDMT_createCCtxPool(nbWorkers, cMem);
}
}
/* only works during initialization phase, not during compression */
static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
{
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
{ unsigned const nbWorkers = cctxPool->totalCCtx;
size_t const poolSize = sizeof(*cctxPool)
+ (nbWorkers-1) * sizeof(ZSTD_CCtx*);
unsigned u;
size_t totalCCtxSize = 0;
for (u=0; u<nbWorkers; u++) {
totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
}
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
assert(nbWorkers > 0);
return poolSize + totalCCtxSize;
}
}
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
{
DEBUGLOG(5, "ZSTDMT_getCCtx");
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
if (cctxPool->availCCtx) {
cctxPool->availCCtx--;
{ ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
return cctx;
} }
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
DEBUGLOG(5, "create one more CCtx");
return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */
}
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
{
if (cctx==NULL) return; /* compatibility with release on NULL */
ZSTD_pthread_mutex_lock(&pool->poolMutex);
if (pool->availCCtx < pool->totalCCtx)
pool->cctx[pool->availCCtx++] = cctx;
else {
/* pool overflow : should not happen, since totalCCtx==nbWorkers */
DEBUGLOG(4, "CCtx pool overflow : free cctx");
ZSTD_freeCCtx(cctx);
}
ZSTD_pthread_mutex_unlock(&pool->poolMutex);
}
/* ==== Serial State ==== */
typedef struct {
void const* start;
size_t size;
} range_t;
typedef struct {
/* All variables in the struct are protected by mutex. */
ZSTD_pthread_mutex_t mutex;
ZSTD_pthread_cond_t cond;
ZSTD_CCtx_params params;
ldmState_t ldmState;
XXH64_state_t xxhState;
unsigned nextJobID;
/* Protects ldmWindow.
* Must be acquired after the main mutex when acquiring both.
*/
ZSTD_pthread_mutex_t ldmWindowMutex;
ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */
ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */
} serialState_t;
static int ZSTDMT_serialState_reset(serialState_t* serialState, ZSTDMT_seqPool* seqPool, ZSTD_CCtx_params params, size_t jobSize)
{
/* Adjust parameters */
if (params.ldmParams.enableLdm) {
DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
assert(params.ldmParams.hashRateLog < 32);
serialState->ldmState.hashPower =
ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength);
} else {
memset(&params.ldmParams, 0, sizeof(params.ldmParams));
}
serialState->nextJobID = 0;
if (params.fParams.checksumFlag)
XXH64_reset(&serialState->xxhState, 0);
if (params.ldmParams.enableLdm) {
ZSTD_customMem cMem = params.customMem;
unsigned const hashLog = params.ldmParams.hashLog;
size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
unsigned const bucketLog =
params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
size_t const bucketSize = (size_t)1 << bucketLog;
unsigned const prevBucketLog =
serialState->params.ldmParams.hashLog -
serialState->params.ldmParams.bucketSizeLog;
/* Size the seq pool tables */
ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
/* Reset the window */
ZSTD_window_clear(&serialState->ldmState.window);
serialState->ldmWindow = serialState->ldmState.window;
/* Resize tables and output space if necessary. */
if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
ZSTD_free(serialState->ldmState.hashTable, cMem);
serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_malloc(hashSize, cMem);
}
if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
ZSTD_free(serialState->ldmState.bucketOffsets, cMem);
serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_malloc(bucketSize, cMem);
}
if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
return 1;
/* Zero the tables */
memset(serialState->ldmState.hashTable, 0, hashSize);
memset(serialState->ldmState.bucketOffsets, 0, bucketSize);
}
serialState->params = params;
serialState->params.jobSize = (U32)jobSize;
return 0;
}
static int ZSTDMT_serialState_init(serialState_t* serialState)
{
int initError = 0;
memset(serialState, 0, sizeof(*serialState));
initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
return initError;
}
static void ZSTDMT_serialState_free(serialState_t* serialState)
{
ZSTD_customMem cMem = serialState->params.customMem;
ZSTD_pthread_mutex_destroy(&serialState->mutex);
ZSTD_pthread_cond_destroy(&serialState->cond);
ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
ZSTD_free(serialState->ldmState.hashTable, cMem);
ZSTD_free(serialState->ldmState.bucketOffsets, cMem);
}
static void ZSTDMT_serialState_update(serialState_t* serialState,
ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
range_t src, unsigned jobID)
{
/* Wait for our turn */
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
while (serialState->nextJobID < jobID) {
DEBUGLOG(5, "wait for serialState->cond");
ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
}
/* A future job may error and skip our job */
if (serialState->nextJobID == jobID) {
/* It is now our turn, do any processing necessary */
if (serialState->params.ldmParams.enableLdm) {
size_t error;
assert(seqStore.seq != NULL && seqStore.pos == 0 &&
seqStore.size == 0 && seqStore.capacity > 0);
assert(src.size <= serialState->params.jobSize);
ZSTD_window_update(&serialState->ldmState.window, src.start, src.size);
error = ZSTD_ldm_generateSequences(
&serialState->ldmState, &seqStore,
&serialState->params.ldmParams, src.start, src.size);
/* We provide a large enough buffer to never fail. */
assert(!ZSTD_isError(error)); (void)error;
/* Update ldmWindow to match the ldmState.window and signal the main
* thread if it is waiting for a buffer.
*/
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
serialState->ldmWindow = serialState->ldmState.window;
ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
}
if (serialState->params.fParams.checksumFlag && src.size > 0)
XXH64_update(&serialState->xxhState, src.start, src.size);
}
/* Now it is the next jobs turn */
serialState->nextJobID++;
ZSTD_pthread_cond_broadcast(&serialState->cond);
ZSTD_pthread_mutex_unlock(&serialState->mutex);
if (seqStore.size > 0) {
size_t const err = ZSTD_referenceExternalSequences(
jobCCtx, seqStore.seq, seqStore.size);
assert(serialState->params.ldmParams.enableLdm);
assert(!ZSTD_isError(err));
(void)err;
}
}
static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
unsigned jobID, size_t cSize)
{
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
if (serialState->nextJobID <= jobID) {
assert(ZSTD_isError(cSize)); (void)cSize;
DEBUGLOG(5, "Skipping past job %u because of error", jobID);
serialState->nextJobID = jobID + 1;
ZSTD_pthread_cond_broadcast(&serialState->cond);
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
ZSTD_window_clear(&serialState->ldmWindow);
ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
}
ZSTD_pthread_mutex_unlock(&serialState->mutex);
}
/* ------------------------------------------ */
/* ===== Worker thread ===== */
/* ------------------------------------------ */
static const range_t kNullRange = { NULL, 0 };
typedef struct {
size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */
ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */
ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */
ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */
ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */
serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */
buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */
range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */
unsigned jobID; /* set by mtctx, then read by worker => no barrier */
unsigned firstJob; /* set by mtctx, then read by worker => no barrier */
unsigned lastJob; /* set by mtctx, then read by worker => no barrier */
ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */
const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */
unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */
size_t dstFlushed; /* used only by mtctx */
unsigned frameChecksumNeeded; /* used only by mtctx */
} ZSTDMT_jobDescription;
#define JOB_ERROR(e) { \
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \
job->cSize = e; \
ZSTD_pthread_mutex_unlock(&job->job_mutex); \
goto _endJob; \
}
/* ZSTDMT_compressionJob() is a POOL_function type */
static void ZSTDMT_compressionJob(void* jobDescription)
{
ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
buffer_t dstBuff = job->dstBuff;
size_t lastCBlockSize = 0;
/* resources */
if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */
dstBuff = ZSTDMT_getBuffer(job->bufPool);
if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */
}
if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL)
JOB_ERROR(ERROR(memory_allocation));
/* Don't compute the checksum for chunks, since we compute it externally,
* but write it in the header.
*/
if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
/* Don't run LDM for the chunks, since we handle it externally */
jobParams.ldmParams.enableLdm = 0;
/* init */
if (job->cdict) {
size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, jobParams, job->fullFrameSize);
assert(job->firstJob); /* only allowed for first job */
if (ZSTD_isError(initError)) JOB_ERROR(initError);
} else { /* srcStart points at reloaded section */
U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
{ size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
}
{ size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
ZSTD_dtlm_fast,
NULL, /*cdict*/
jobParams, pledgedSrcSize);
if (ZSTD_isError(initError)) JOB_ERROR(initError);
} }
/* Perform serial step as early as possible, but after CCtx initialization */
ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */
size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
ZSTD_invalidateRepCodes(cctx);
}
/* compress */
{ size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
const BYTE* ip = (const BYTE*) job->src.start;
BYTE* const ostart = (BYTE*)dstBuff.start;
BYTE* op = ostart;
BYTE* oend = op + dstBuff.capacity;
int chunkNb;
if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */
DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
assert(job->cSize == 0);
for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
ip += chunkSize;
op += cSize; assert(op < oend);
/* stats */
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
job->cSize += cSize;
job->consumed = chunkSize * chunkNb;
DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
(U32)cSize, (U32)job->cSize);
ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */
ZSTD_pthread_mutex_unlock(&job->job_mutex);
}
/* last block */
assert(chunkSize > 0);
assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
size_t const cSize = (job->lastJob) ?
ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) :
ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
lastCBlockSize = cSize;
} }
_endJob:
ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
if (job->prefix.size > 0)
DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
/* release resources */
ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
ZSTDMT_releaseCCtx(job->cctxPool, cctx);
/* report */
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
job->cSize += lastCBlockSize;
job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */
ZSTD_pthread_cond_signal(&job->job_cond);
ZSTD_pthread_mutex_unlock(&job->job_mutex);
}
/* ------------------------------------------ */
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
typedef struct {
range_t prefix; /* read-only non-owned prefix buffer */
buffer_t buffer;
size_t filled;
} inBuff_t;
typedef struct {
BYTE* buffer; /* The round input buffer. All jobs get references
* to pieces of the buffer. ZSTDMT_tryGetInputRange()
* handles handing out job input buffers, and makes
* sure it doesn't overlap with any pieces still in use.
*/
size_t capacity; /* The capacity of buffer. */
size_t pos; /* The position of the current inBuff in the round
* buffer. Updated past the end if the inBuff once
* the inBuff is sent to the worker thread.
* pos <= capacity.
*/
} roundBuff_t;
static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
#define RSYNC_LENGTH 32
typedef struct {
U64 hash;
U64 hitMask;
U64 primePower;
} rsyncState_t;
struct ZSTDMT_CCtx_s {
POOL_ctx* factory;
ZSTDMT_jobDescription* jobs;
ZSTDMT_bufferPool* bufPool;
ZSTDMT_CCtxPool* cctxPool;
ZSTDMT_seqPool* seqPool;
ZSTD_CCtx_params params;
size_t targetSectionSize;
size_t targetPrefixSize;
int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
inBuff_t inBuff;
roundBuff_t roundBuff;
serialState_t serial;
rsyncState_t rsync;
unsigned singleBlockingThread;
unsigned jobIDMask;
unsigned doneJobID;
unsigned nextJobID;
unsigned frameEnded;
unsigned allJobsCompleted;
unsigned long long frameContentSize;
unsigned long long consumed;
unsigned long long produced;
ZSTD_customMem cMem;
ZSTD_CDict* cdictLocal;
const ZSTD_CDict* cdict;
};
static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
{
U32 jobNb;
if (jobTable == NULL) return;
for (jobNb=0; jobNb<nbJobs; jobNb++) {
ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
}
ZSTD_free(jobTable, cMem);
}
/* ZSTDMT_allocJobsTable()
* allocate and init a job table.
* update *nbJobsPtr to next power of 2 value, as size of table */
static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
{
U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
U32 const nbJobs = 1 << nbJobsLog2;
U32 jobNb;
ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
ZSTD_calloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
int initError = 0;
if (jobTable==NULL) return NULL;
*nbJobsPtr = nbJobs;
for (jobNb=0; jobNb<nbJobs; jobNb++) {
initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
}
if (initError != 0) {
ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
return NULL;
}
return jobTable;
}
static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
U32 nbJobs = nbWorkers + 2;
if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */
ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
mtctx->jobIDMask = 0;
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
if (mtctx->jobs==NULL) return ERROR(memory_allocation);
assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */
mtctx->jobIDMask = nbJobs - 1;
}
return 0;
}
/* ZSTDMT_CCtxParam_setNbWorkers():
* Internal use only */
size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
{
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
}
MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem)
{
ZSTDMT_CCtx* mtctx;
U32 nbJobs = nbWorkers + 2;
int initError;
DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
if (nbWorkers < 1) return NULL;
nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
/* invalid custom allocator */
return NULL;
mtctx = (ZSTDMT_CCtx*) ZSTD_calloc(sizeof(ZSTDMT_CCtx), cMem);
if (!mtctx) return NULL;
ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
mtctx->cMem = cMem;
mtctx->allJobsCompleted = 1;
mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */
mtctx->jobIDMask = nbJobs - 1;
mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
initError = ZSTDMT_serialState_init(&mtctx->serial);
mtctx->roundBuff = kNullRoundBuff;
if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
ZSTDMT_freeCCtx(mtctx);
return NULL;
}
DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
return mtctx;
}
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem)
{
#ifdef ZSTD_MULTITHREAD
return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem);
#else
(void)nbWorkers;
(void)cMem;
return NULL;
#endif
}
ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers)
{
return ZSTDMT_createCCtx_advanced(nbWorkers, ZSTD_defaultCMem);
}
/* ZSTDMT_releaseAllJobResources() :
* note : ensure all workers are killed first ! */
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
{
unsigned jobID;
DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
mtctx->jobs[jobID].cSize = 0;
}
memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription));
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->inBuff.filled = 0;
mtctx->allJobsCompleted = 1;
}
static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
{
DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
while (mtctx->doneJobID < mtctx->nextJobID) {
unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */
ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
}
ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
mtctx->doneJobID++;
}
}
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
{
if (mtctx==NULL) return 0; /* compatible with free on NULL */
POOL_free(mtctx->factory); /* stop and free worker threads */
ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */
ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
ZSTDMT_freeBufferPool(mtctx->bufPool);
ZSTDMT_freeCCtxPool(mtctx->cctxPool);
ZSTDMT_freeSeqPool(mtctx->seqPool);
ZSTDMT_serialState_free(&mtctx->serial);
ZSTD_freeCDict(mtctx->cdictLocal);
if (mtctx->roundBuff.buffer)
ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem);
ZSTD_free(mtctx, mtctx->cMem);
return 0;
}
size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
{
if (mtctx == NULL) return 0; /* supports sizeof NULL */
return sizeof(*mtctx)
+ POOL_sizeof(mtctx->factory)
+ ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
+ (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
+ ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
+ ZSTDMT_sizeof_seqPool(mtctx->seqPool)
+ ZSTD_sizeof_CDict(mtctx->cdictLocal)
+ mtctx->roundBuff.capacity;
}
/* Internal only */
size_t
ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params,
ZSTDMT_parameter parameter,
int value)
{
DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter");
switch(parameter)
{
case ZSTDMT_p_jobSize :
DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter : set jobSize to %i", value);
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_jobSize, value);
case ZSTDMT_p_overlapLog :
DEBUGLOG(4, "ZSTDMT_p_overlapLog : %i", value);
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_overlapLog, value);
case ZSTDMT_p_rsyncable :
DEBUGLOG(4, "ZSTD_p_rsyncable : %i", value);
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_rsyncable, value);
default :
return ERROR(parameter_unsupported);
}
}
size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value)
{
DEBUGLOG(4, "ZSTDMT_setMTCtxParameter");
return ZSTDMT_CCtxParam_setMTCtxParameter(&mtctx->params, parameter, value);
}
size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value)
{
switch (parameter) {
case ZSTDMT_p_jobSize:
return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_jobSize, value);
case ZSTDMT_p_overlapLog:
return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_overlapLog, value);
case ZSTDMT_p_rsyncable:
return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_rsyncable, value);
default:
return ERROR(parameter_unsupported);
}
}
/* Sets parameters relevant to the compression job,
* initializing others to default values. */
static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(ZSTD_CCtx_params const params)
{
ZSTD_CCtx_params jobParams = params;
/* Clear parameters related to multithreading */
jobParams.forceWindow = 0;
jobParams.nbWorkers = 0;
jobParams.jobSize = 0;
jobParams.overlapLog = 0;
jobParams.rsyncable = 0;
memset(&jobParams.ldmParams, 0, sizeof(ldmParams_t));
memset(&jobParams.customMem, 0, sizeof(ZSTD_customMem));
return jobParams;
}
/* ZSTDMT_resize() :
* @return : error code if fails, 0 on success */
static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
{
if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) );
mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers);
if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
return 0;
}
/*! ZSTDMT_updateCParams_whileCompressing() :
* Updates a selected set of compression parameters, remaining compatible with currently active frame.
* New parameters will be applied to next compression job. */
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
{
U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */
int const compressionLevel = cctxParams->compressionLevel;
DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
compressionLevel);
mtctx->params.compressionLevel = compressionLevel;
{ ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, 0, 0);
cParams.windowLog = saved_wlog;
mtctx->params.cParams = cParams;
}
}
/* ZSTDMT_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads.
* Note : mutex will be acquired during statistics collection inside workers. */
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
{
ZSTD_frameProgression fps;
DEBUGLOG(5, "ZSTDMT_getFrameProgression");
fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
fps.consumed = mtctx->consumed;
fps.produced = fps.flushed = mtctx->produced;
fps.currentJobID = mtctx->nextJobID;
fps.nbActiveWorkers = 0;
{ unsigned jobNb;
unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
mtctx->doneJobID, lastJobNb, mtctx->jobReady)
for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
unsigned const wJobID = jobNb & mtctx->jobIDMask;
ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
{ size_t const cResult = jobPtr->cSize;
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
assert(flushed <= produced);
fps.ingested += jobPtr->src.size;
fps.consumed += jobPtr->consumed;
fps.produced += produced;
fps.flushed += flushed;
fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
}
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
}
}
return fps;
}
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
{
size_t toFlush;
unsigned const jobID = mtctx->doneJobID;
assert(jobID <= mtctx->nextJobID);
if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */
/* look into oldest non-fully-flushed job */
{ unsigned const wJobID = jobID & mtctx->jobIDMask;
ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
{ size_t const cResult = jobPtr->cSize;
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
assert(flushed <= produced);
assert(jobPtr->consumed <= jobPtr->src.size);
toFlush = produced - flushed;
/* if toFlush==0, nothing is available to flush.
* However, jobID is expected to still be active:
* if jobID was already completed and fully flushed,
* ZSTDMT_flushProduced() should have already moved onto next job.
* Therefore, some input has not yet been consumed. */
if (toFlush==0) {
assert(jobPtr->consumed < jobPtr->src.size);
}
}
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
}
return toFlush;
}
/* ------------------------------------------ */
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
static unsigned ZSTDMT_computeTargetJobLog(ZSTD_CCtx_params const params)
{
unsigned jobLog;
if (params.ldmParams.enableLdm) {
/* In Long Range Mode, the windowLog is typically oversized.
* In which case, it's preferable to determine the jobSize
* based on chainLog instead. */
jobLog = MAX(21, params.cParams.chainLog + 4);
} else {
jobLog = MAX(20, params.cParams.windowLog + 2);
}
return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
}
static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
{
switch(strat)
{
case ZSTD_btultra2:
return 9;
case ZSTD_btultra:
case ZSTD_btopt:
return 8;
case ZSTD_btlazy2:
case ZSTD_lazy2:
return 7;
case ZSTD_lazy:
case ZSTD_greedy:
case ZSTD_dfast:
case ZSTD_fast:
default:;
}
return 6;
}
static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
{
assert(0 <= ovlog && ovlog <= 9);
if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
return ovlog;
}
static size_t ZSTDMT_computeOverlapSize(ZSTD_CCtx_params const params)
{
int const overlapRLog = 9 - ZSTDMT_overlapLog(params.overlapLog, params.cParams.strategy);
int ovLog = (overlapRLog >= 8) ? 0 : (params.cParams.windowLog - overlapRLog);
assert(0 <= overlapRLog && overlapRLog <= 8);
if (params.ldmParams.enableLdm) {
/* In Long Range Mode, the windowLog is typically oversized.
* In which case, it's preferable to determine the jobSize
* based on chainLog instead.
* Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
ovLog = MIN(params.cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
- overlapRLog;
}
assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
DEBUGLOG(4, "overlapLog : %i", params.overlapLog);
DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
return (ovLog==0) ? 0 : (size_t)1 << ovLog;
}
static unsigned
ZSTDMT_computeNbJobs(ZSTD_CCtx_params params, size_t srcSize, unsigned nbWorkers)
{
assert(nbWorkers>0);
{ size_t const jobSizeTarget = (size_t)1 << ZSTDMT_computeTargetJobLog(params);
size_t const jobMaxSize = jobSizeTarget << 2;
size_t const passSizeMax = jobMaxSize * nbWorkers;
unsigned const multiplier = (unsigned)(srcSize / passSizeMax) + 1;
unsigned const nbJobsLarge = multiplier * nbWorkers;
unsigned const nbJobsMax = (unsigned)(srcSize / jobSizeTarget) + 1;
unsigned const nbJobsSmall = MIN(nbJobsMax, nbWorkers);
return (multiplier>1) ? nbJobsLarge : nbJobsSmall;
} }
/* ZSTDMT_compress_advanced_internal() :
* This is a blocking function : it will only give back control to caller after finishing its compression job.
*/
static size_t ZSTDMT_compress_advanced_internal(
ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params)
{
ZSTD_CCtx_params const jobParams = ZSTDMT_initJobCCtxParams(params);
size_t const overlapSize = ZSTDMT_computeOverlapSize(params);
unsigned const nbJobs = ZSTDMT_computeNbJobs(params, srcSize, params.nbWorkers);
size_t const proposedJobSize = (srcSize + (nbJobs-1)) / nbJobs;
size_t const avgJobSize = (((proposedJobSize-1) & 0x1FFFF) < 0x7FFF) ? proposedJobSize + 0xFFFF : proposedJobSize; /* avoid too small last block */
const char* const srcStart = (const char*)src;
size_t remainingSrcSize = srcSize;
unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbJobs : (unsigned)(dstCapacity / ZSTD_compressBound(avgJobSize)); /* presumes avgJobSize >= 256 KB, which should be the case */
size_t frameStartPos = 0, dstBufferPos = 0;
assert(jobParams.nbWorkers == 0);
assert(mtctx->cctxPool->totalCCtx == params.nbWorkers);
params.jobSize = (U32)avgJobSize;
DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: nbJobs=%2u (rawSize=%u bytes; fixedSize=%u) ",
nbJobs, (U32)proposedJobSize, (U32)avgJobSize);
if ((nbJobs==1) | (params.nbWorkers<=1)) { /* fallback to single-thread mode : this is a blocking invocation anyway */
ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0];
DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: fallback to single-thread mode");
if (cdict) return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, jobParams.fParams);
return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, jobParams);
}
assert(avgJobSize >= 256 KB); /* condition for ZSTD_compressBound(A) + ZSTD_compressBound(B) <= ZSTD_compressBound(A+B), required to compress directly into Dst (no additional buffer) */
ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(avgJobSize) );
if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, avgJobSize))
return ERROR(memory_allocation);
FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbJobs) ); /* only expands if necessary */
{ unsigned u;
for (u=0; u<nbJobs; u++) {
size_t const jobSize = MIN(remainingSrcSize, avgJobSize);
size_t const dstBufferCapacity = ZSTD_compressBound(jobSize);
buffer_t const dstAsBuffer = { (char*)dst + dstBufferPos, dstBufferCapacity };
buffer_t const dstBuffer = u < compressWithinDst ? dstAsBuffer : g_nullBuffer;
size_t dictSize = u ? overlapSize : 0;
mtctx->jobs[u].prefix.start = srcStart + frameStartPos - dictSize;
mtctx->jobs[u].prefix.size = dictSize;
mtctx->jobs[u].src.start = srcStart + frameStartPos;
mtctx->jobs[u].src.size = jobSize; assert(jobSize > 0); /* avoid job.src.size == 0 */
mtctx->jobs[u].consumed = 0;
mtctx->jobs[u].cSize = 0;
mtctx->jobs[u].cdict = (u==0) ? cdict : NULL;
mtctx->jobs[u].fullFrameSize = srcSize;
mtctx->jobs[u].params = jobParams;
/* do not calculate checksum within sections, but write it in header for first section */
mtctx->jobs[u].dstBuff = dstBuffer;
mtctx->jobs[u].cctxPool = mtctx->cctxPool;
mtctx->jobs[u].bufPool = mtctx->bufPool;
mtctx->jobs[u].seqPool = mtctx->seqPool;
mtctx->jobs[u].serial = &mtctx->serial;
mtctx->jobs[u].jobID = u;
mtctx->jobs[u].firstJob = (u==0);
mtctx->jobs[u].lastJob = (u==nbJobs-1);
DEBUGLOG(5, "ZSTDMT_compress_advanced_internal: posting job %u (%u bytes)", u, (U32)jobSize);
DEBUG_PRINTHEX(6, mtctx->jobs[u].prefix.start, 12);
POOL_add(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[u]);
frameStartPos += jobSize;
dstBufferPos += dstBufferCapacity;
remainingSrcSize -= jobSize;
} }
/* collect result */
{ size_t error = 0, dstPos = 0;
unsigned jobID;
for (jobID=0; jobID<nbJobs; jobID++) {
DEBUGLOG(5, "waiting for job %u ", jobID);
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
DEBUGLOG(5, "waiting for jobCompleted signal from job %u", jobID);
ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
}
ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
DEBUGLOG(5, "ready to write job %u ", jobID);
{ size_t const cSize = mtctx->jobs[jobID].cSize;
if (ZSTD_isError(cSize)) error = cSize;
if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall);
if (jobID) { /* note : job 0 is written directly at dst, which is correct position */
if (!error)
memmove((char*)dst + dstPos, mtctx->jobs[jobID].dstBuff.start, cSize); /* may overlap when job compressed within dst */
if (jobID >= compressWithinDst) { /* job compressed into its own buffer, which must be released */
DEBUGLOG(5, "releasing buffer %u>=%u", jobID, compressWithinDst);
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
} }
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
mtctx->jobs[jobID].cSize = 0;
dstPos += cSize ;
}
} /* for (jobID=0; jobID<nbJobs; jobID++) */
DEBUGLOG(4, "checksumFlag : %u ", params.fParams.checksumFlag);
if (params.fParams.checksumFlag) {
U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
if (dstPos + 4 > dstCapacity) {
error = ERROR(dstSize_tooSmall);
} else {
DEBUGLOG(4, "writing checksum : %08X \n", checksum);
MEM_writeLE32((char*)dst + dstPos, checksum);
dstPos += 4;
} }
if (!error) DEBUGLOG(4, "compressed size : %u ", (U32)dstPos);
return error ? error : dstPos;
}
}
size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_parameters params,
int overlapLog)
{
ZSTD_CCtx_params cctxParams = mtctx->params;
cctxParams.cParams = params.cParams;
cctxParams.fParams = params.fParams;
assert(ZSTD_OVERLAPLOG_MIN <= overlapLog && overlapLog <= ZSTD_OVERLAPLOG_MAX);
cctxParams.overlapLog = overlapLog;
return ZSTDMT_compress_advanced_internal(mtctx,
dst, dstCapacity,
src, srcSize,
cdict, cctxParams);
}
size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0);
int const overlapLog = ZSTDMT_overlapLog_default(params.cParams.strategy);
params.fParams.contentSizeFlag = 1;
return ZSTDMT_compress_advanced(mtctx, dst, dstCapacity, src, srcSize, NULL, params, overlapLog);
}
/* ====================================== */
/* ======= Streaming API ======= */
/* ====================================== */
size_t ZSTDMT_initCStream_internal(
ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
(U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
/* params supposed partially fully validated at this point */
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
/* init */
if (params.nbWorkers != mtctx->params.nbWorkers)
FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) );
if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
mtctx->singleBlockingThread = (pledgedSrcSize <= ZSTDMT_JOBSIZE_MIN); /* do not trigger multi-threading when srcSize is too small */
if (mtctx->singleBlockingThread) {
ZSTD_CCtx_params const singleThreadParams = ZSTDMT_initJobCCtxParams(params);
DEBUGLOG(5, "ZSTDMT_initCStream_internal: switch to single blocking thread mode");
assert(singleThreadParams.nbWorkers == 0);
return ZSTD_initCStream_internal(mtctx->cctxPool->cctx[0],
dict, dictSize, cdict,
singleThreadParams, pledgedSrcSize);
}
DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */
ZSTDMT_waitForAllJobsCompleted(mtctx);
ZSTDMT_releaseAllJobResources(mtctx);
mtctx->allJobsCompleted = 1;
}
mtctx->params = params;
mtctx->frameContentSize = pledgedSrcSize;
if (dict) {
ZSTD_freeCDict(mtctx->cdictLocal);
mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
params.cParams, mtctx->cMem);
mtctx->cdict = mtctx->cdictLocal;
if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
} else {
ZSTD_freeCDict(mtctx->cdictLocal);
mtctx->cdictLocal = NULL;
mtctx->cdict = cdict;
}
mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(params);
DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
mtctx->targetSectionSize = params.jobSize;
if (mtctx->targetSectionSize == 0) {
mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(params);
}
assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
if (params.rsyncable) {
/* Aim for the targetsectionSize as the average job size. */
U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20);
U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20;
assert(jobSizeMB >= 1);
DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
mtctx->rsync.hash = 0;
mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
}
if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */
DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
{
/* If ldm is enabled we need windowSize space. */
size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0;
/* Two buffers of slack, plus extra space for the overlap
* This is the minimum slack that LDM works with. One extra because
* flush might waste up to targetSectionSize-1 bytes. Another extra
* for the overlap (if > 0), then one to fill which doesn't overlap
* with the LDM window.
*/
size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
/* Compute the total size, and always have enough slack */
size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
if (mtctx->roundBuff.capacity < capacity) {
if (mtctx->roundBuff.buffer)
ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem);
mtctx->roundBuff.buffer = (BYTE*)ZSTD_malloc(capacity, mtctx->cMem);
if (mtctx->roundBuff.buffer == NULL) {
mtctx->roundBuff.capacity = 0;
return ERROR(memory_allocation);
}
mtctx->roundBuff.capacity = capacity;
}
}
DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
mtctx->roundBuff.pos = 0;
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->inBuff.filled = 0;
mtctx->inBuff.prefix = kNullRange;
mtctx->doneJobID = 0;
mtctx->nextJobID = 0;
mtctx->frameEnded = 0;
mtctx->allJobsCompleted = 0;
mtctx->consumed = 0;
mtctx->produced = 0;
if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize))
return ERROR(memory_allocation);
return 0;
}
size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize,
ZSTD_parameters params,
unsigned long long pledgedSrcSize)
{
ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */
DEBUGLOG(4, "ZSTDMT_initCStream_advanced (pledgedSrcSize=%u)", (U32)pledgedSrcSize);
cctxParams.cParams = params.cParams;
cctxParams.fParams = params.fParams;
return ZSTDMT_initCStream_internal(mtctx, dict, dictSize, ZSTD_dct_auto, NULL,
cctxParams, pledgedSrcSize);
}
size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams,
unsigned long long pledgedSrcSize)
{
ZSTD_CCtx_params cctxParams = mtctx->params;
if (cdict==NULL) return ERROR(dictionary_wrong); /* method incompatible with NULL cdict */
cctxParams.cParams = ZSTD_getCParamsFromCDict(cdict);
cctxParams.fParams = fParams;
return ZSTDMT_initCStream_internal(mtctx, NULL, 0 /*dictSize*/, ZSTD_dct_auto, cdict,
cctxParams, pledgedSrcSize);
}
/* ZSTDMT_resetCStream() :
* pledgedSrcSize can be zero == unknown (for the time being)
* prefer using ZSTD_CONTENTSIZE_UNKNOWN,
* as `0` might mean "empty" in the future */
size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize)
{
if (!pledgedSrcSize) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, 0, mtctx->params,
pledgedSrcSize);
}
size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel) {
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0);
ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */
DEBUGLOG(4, "ZSTDMT_initCStream (cLevel=%i)", compressionLevel);
cctxParams.cParams = params.cParams;
cctxParams.fParams = params.fParams;
return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN);
}
/* ZSTDMT_writeLastEmptyBlock()
* Write a single empty block with an end-of-frame to finish a frame.
* Job must be created from streaming variant.
* This function is always successful if expected conditions are fulfilled.
*/
static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
{
assert(job->lastJob == 1);
assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */
assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */
assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
if (job->dstBuff.start == NULL) {
job->cSize = ERROR(memory_allocation);
return;
}
assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */
job->src = kNullRange;
job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
assert(!ZSTD_isError(job->cSize));
assert(job->consumed == 0);
}
static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
{
unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
int const endFrame = (endOp == ZSTD_e_end);
if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
return 0;
}
if (!mtctx->jobReady) {
BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
mtctx->jobs[jobID].src.start = src;
mtctx->jobs[jobID].src.size = srcSize;
assert(mtctx->inBuff.filled >= srcSize);
mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
mtctx->jobs[jobID].consumed = 0;
mtctx->jobs[jobID].cSize = 0;
mtctx->jobs[jobID].params = mtctx->params;
mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
mtctx->jobs[jobID].bufPool = mtctx->bufPool;
mtctx->jobs[jobID].seqPool = mtctx->seqPool;
mtctx->jobs[jobID].serial = &mtctx->serial;
mtctx->jobs[jobID].jobID = mtctx->nextJobID;
mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
mtctx->jobs[jobID].lastJob = endFrame;
mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
mtctx->jobs[jobID].dstFlushed = 0;
/* Update the round buffer pos and clear the input buffer to be reset */
mtctx->roundBuff.pos += srcSize;
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->inBuff.filled = 0;
/* Set the prefix */
if (!endFrame) {
size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
mtctx->inBuff.prefix.size = newPrefixSize;
} else { /* endFrame==1 => no need for another input buffer */
mtctx->inBuff.prefix = kNullRange;
mtctx->frameEnded = endFrame;
if (mtctx->nextJobID == 0) {
/* single job exception : checksum is already calculated directly within worker thread */
mtctx->params.fParams.checksumFlag = 0;
} }
if ( (srcSize == 0)
&& (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */
ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
mtctx->nextJobID++;
return 0;
}
}
DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))",
mtctx->nextJobID,
(U32)mtctx->jobs[jobID].src.size,
mtctx->jobs[jobID].lastJob,
mtctx->nextJobID,
jobID);
if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
mtctx->nextJobID++;
mtctx->jobReady = 0;
} else {
DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
mtctx->jobReady = 1;
}
return 0;
}
/*! ZSTDMT_flushProduced() :
* flush whatever data has been produced but not yet flushed in current job.
* move to next job if current one is fully flushed.
* `output` : `pos` will be updated with amount of data flushed .
* `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
* @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
{
unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
assert(output->size >= output->pos);
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
if ( blockToFlush
&& (mtctx->doneJobID < mtctx->nextJobID) ) {
assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */
if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
break;
}
DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */
} }
/* try to flush something */
{ size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */
size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */
size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
if (ZSTD_isError(cSize)) {
DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
mtctx->doneJobID, ZSTD_getErrorName(cSize));
ZSTDMT_waitForAllJobsCompleted(mtctx);
ZSTDMT_releaseAllJobResources(mtctx);
return cSize;
}
/* add frame checksum if necessary (can only happen once) */
assert(srcConsumed <= srcSize);
if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */
&& mtctx->jobs[wJobID].frameChecksumNeeded ) {
U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
cSize += 4;
mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */
mtctx->jobs[wJobID].frameChecksumNeeded = 0;
}
if (cSize > 0) { /* compression is ongoing or completed */
size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
(U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
assert(mtctx->doneJobID < mtctx->nextJobID);
assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
memcpy((char*)output->dst + output->pos,
(const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
toFlush);
output->pos += toFlush;
mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */
if ( (srcConsumed == srcSize) /* job is completed */
&& (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */
DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
DEBUGLOG(5, "dstBuffer released");
mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */
mtctx->consumed += srcSize;
mtctx->produced += cSize;
mtctx->doneJobID++;
} }
/* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
if (srcSize > srcConsumed) return 1; /* current job not completely compressed */
}
if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */
if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */
if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */
mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */
if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
return 0; /* internal buffers fully flushed */
}
/**
* Returns the range of data used by the earliest job that is not yet complete.
* If the data of the first job is broken up into two segments, we cover both
* sections.
*/
static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
{
unsigned const firstJobID = mtctx->doneJobID;
unsigned const lastJobID = mtctx->nextJobID;
unsigned jobID;
for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
unsigned const wJobID = jobID & mtctx->jobIDMask;
size_t consumed;
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
consumed = mtctx->jobs[wJobID].consumed;
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
if (consumed < mtctx->jobs[wJobID].src.size) {
range_t range = mtctx->jobs[wJobID].prefix;
if (range.size == 0) {
/* Empty prefix */
range = mtctx->jobs[wJobID].src;
}
/* Job source in multiple segments not supported yet */
assert(range.start <= mtctx->jobs[wJobID].src.start);
return range;
}
}
return kNullRange;
}
/**
* Returns non-zero iff buffer and range overlap.
*/
static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
{
BYTE const* const bufferStart = (BYTE const*)buffer.start;
BYTE const* const bufferEnd = bufferStart + buffer.capacity;
BYTE const* const rangeStart = (BYTE const*)range.start;
BYTE const* const rangeEnd = rangeStart + range.size;
if (rangeStart == NULL || bufferStart == NULL)
return 0;
/* Empty ranges cannot overlap */
if (bufferStart == bufferEnd || rangeStart == rangeEnd)
return 0;
return bufferStart < rangeEnd && rangeStart < bufferEnd;
}
static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
{
range_t extDict;
range_t prefix;
DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
extDict.start = window.dictBase + window.lowLimit;
extDict.size = window.dictLimit - window.lowLimit;
prefix.start = window.base + window.dictLimit;
prefix.size = window.nextSrc - (window.base + window.dictLimit);
DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
(size_t)extDict.start,
(size_t)extDict.start + extDict.size);
DEBUGLOG(5, "prefix [0x%zx, 0x%zx)",
(size_t)prefix.start,
(size_t)prefix.start + prefix.size);
return ZSTDMT_isOverlapped(buffer, extDict)
|| ZSTDMT_isOverlapped(buffer, prefix);
}
static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
{
if (mtctx->params.ldmParams.enableLdm) {
ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
DEBUGLOG(5, "source [0x%zx, 0x%zx)",
(size_t)buffer.start,
(size_t)buffer.start + buffer.capacity);
ZSTD_PTHREAD_MUTEX_LOCK(mutex);
while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
DEBUGLOG(5, "Waiting for LDM to finish...");
ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
}
DEBUGLOG(6, "Done waiting for LDM to finish");
ZSTD_pthread_mutex_unlock(mutex);
}
}
/**
* Attempts to set the inBuff to the next section to fill.
* If any part of the new section is still in use we give up.
* Returns non-zero if the buffer is filled.
*/
static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
{
range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
size_t const target = mtctx->targetSectionSize;
buffer_t buffer;
DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
assert(mtctx->inBuff.buffer.start == NULL);
assert(mtctx->roundBuff.capacity >= target);
if (spaceLeft < target) {
/* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
* Simply copy the prefix to the beginning in that case.
*/
BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
size_t const prefixSize = mtctx->inBuff.prefix.size;
buffer.start = start;
buffer.capacity = prefixSize;
if (ZSTDMT_isOverlapped(buffer, inUse)) {
DEBUGLOG(5, "Waiting for buffer...");
return 0;
}
ZSTDMT_waitForLdmComplete(mtctx, buffer);
memmove(start, mtctx->inBuff.prefix.start, prefixSize);
mtctx->inBuff.prefix.start = start;
mtctx->roundBuff.pos = prefixSize;
}
buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
buffer.capacity = target;
if (ZSTDMT_isOverlapped(buffer, inUse)) {
DEBUGLOG(5, "Waiting for buffer...");
return 0;
}
assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
ZSTDMT_waitForLdmComplete(mtctx, buffer);
DEBUGLOG(5, "Using prefix range [%zx, %zx)",
(size_t)mtctx->inBuff.prefix.start,
(size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
DEBUGLOG(5, "Using source range [%zx, %zx)",
(size_t)buffer.start,
(size_t)buffer.start + buffer.capacity);
mtctx->inBuff.buffer = buffer;
mtctx->inBuff.filled = 0;
assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
return 1;
}
typedef struct {
size_t toLoad; /* The number of bytes to load from the input. */
int flush; /* Boolean declaring if we must flush because we found a synchronization point. */
} syncPoint_t;
/**
* Searches through the input for a synchronization point. If one is found, we
* will instruct the caller to flush, and return the number of bytes to load.
* Otherwise, we will load as many bytes as possible and instruct the caller
* to continue as normal.
*/
static syncPoint_t
findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
{
BYTE const* const istart = (BYTE const*)input.src + input.pos;
U64 const primePower = mtctx->rsync.primePower;
U64 const hitMask = mtctx->rsync.hitMask;
syncPoint_t syncPoint;
U64 hash;
BYTE const* prev;
size_t pos;
syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
syncPoint.flush = 0;
if (!mtctx->params.rsyncable)
/* Rsync is disabled. */
return syncPoint;
if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
/* Not enough to compute the hash.
* We will miss any synchronization points in this RSYNC_LENGTH byte
* window. However, since it depends only in the internal buffers, if the
* state is already synchronized, we will remain synchronized.
* Additionally, the probability that we miss a synchronization point is
* low: RSYNC_LENGTH / targetSectionSize.
*/
return syncPoint;
/* Initialize the loop variables. */
if (mtctx->inBuff.filled >= RSYNC_LENGTH) {
/* We have enough bytes buffered to initialize the hash.
* Start scanning at the beginning of the input.
*/
pos = 0;
prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
} else {
/* We don't have enough bytes buffered to initialize the hash, but
* we know we have at least RSYNC_LENGTH bytes total.
* Start scanning after the first RSYNC_LENGTH bytes less the bytes
* already buffered.
*/
pos = RSYNC_LENGTH - mtctx->inBuff.filled;
prev = (BYTE const*)mtctx->inBuff.buffer.start - pos;
hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled);
hash = ZSTD_rollingHash_append(hash, istart, pos);
}
/* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
* through the input. If we hit a synchronization point, then cut the
* job off, and tell the compressor to flush the job. Otherwise, load
* all the bytes and continue as normal.
* If we go too long without a synchronization point (targetSectionSize)
* then a block will be emitted anyways, but this is okay, since if we
* are already synchronized we will remain synchronized.
*/
for (; pos < syncPoint.toLoad; ++pos) {
BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
/* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */
hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
if ((hash & hitMask) == hitMask) {
syncPoint.toLoad = pos + 1;
syncPoint.flush = 1;
break;
}
}
return syncPoint;
}
size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
{
size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
return hintInSize;
}
/** ZSTDMT_compressStream_generic() :
* internal use only - exposed to be invoked from zstd_compress.c
* assumption : output and input are valid (pos <= size)
* @return : minimum amount of data remaining to flush, 0 if none */
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp)
{
unsigned forwardInputProgress = 0;
DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
(U32)endOp, (U32)(input->size - input->pos));
assert(output->pos <= output->size);
assert(input->pos <= input->size);
if (mtctx->singleBlockingThread) { /* delegate to single-thread (synchronous) */
return ZSTD_compressStream2(mtctx->cctxPool->cctx[0], output, input, endOp);
}
if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
/* current frame being ended. Only flush/end are allowed */
return ERROR(stage_wrong);
}
/* single-pass shortcut (note : synchronous-mode) */
if ( (!mtctx->params.rsyncable) /* rsyncable mode is disabled */
&& (mtctx->nextJobID == 0) /* just started */
&& (mtctx->inBuff.filled == 0) /* nothing buffered */
&& (!mtctx->jobReady) /* no job already created */
&& (endOp == ZSTD_e_end) /* end order */
&& (output->size - output->pos >= ZSTD_compressBound(input->size - input->pos)) ) { /* enough space in dst */
size_t const cSize = ZSTDMT_compress_advanced_internal(mtctx,
(char*)output->dst + output->pos, output->size - output->pos,
(const char*)input->src + input->pos, input->size - input->pos,
mtctx->cdict, mtctx->params);
if (ZSTD_isError(cSize)) return cSize;
input->pos = input->size;
output->pos += cSize;
mtctx->allJobsCompleted = 1;
mtctx->frameEnded = 1;
return 0;
}
/* fill input buffer */
if ( (!mtctx->jobReady)
&& (input->size > input->pos) ) { /* support NULL input */
if (mtctx->inBuff.buffer.start == NULL) {
assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
if (!ZSTDMT_tryGetInputRange(mtctx)) {
/* It is only possible for this operation to fail if there are
* still compression jobs ongoing.
*/
DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
assert(mtctx->doneJobID != mtctx->nextJobID);
} else
DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
}
if (mtctx->inBuff.buffer.start != NULL) {
syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
if (syncPoint.flush && endOp == ZSTD_e_continue) {
endOp = ZSTD_e_flush;
}
assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
(U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
input->pos += syncPoint.toLoad;
mtctx->inBuff.filled += syncPoint.toLoad;
forwardInputProgress = syncPoint.toLoad>0;
}
if ((input->pos < input->size) && (endOp == ZSTD_e_end))
endOp = ZSTD_e_flush; /* can't end now : not all input consumed */
}
if ( (mtctx->jobReady)
|| (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */
|| ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */
|| ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */
size_t const jobSize = mtctx->inBuff.filled;
assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) );
}
/* check for potential compressed data ready to be flushed */
{ size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */
DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
return remainingToFlush;
}
}
size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
FORWARD_IF_ERROR( ZSTDMT_compressStream_generic(mtctx, output, input, ZSTD_e_continue) );
/* recommended next input size : fill current input buffer */
return mtctx->targetSectionSize - mtctx->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */
}
static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_EndDirective endFrame)
{
size_t const srcSize = mtctx->inBuff.filled;
DEBUGLOG(5, "ZSTDMT_flushStream_internal");
if ( mtctx->jobReady /* one job ready for a worker to pick up */
|| (srcSize > 0) /* still some data within input buffer */
|| ((endFrame==ZSTD_e_end) && !mtctx->frameEnded)) { /* need a last 0-size block to end frame */
DEBUGLOG(5, "ZSTDMT_flushStream_internal : create a new job (%u bytes, end:%u)",
(U32)srcSize, (U32)endFrame);
FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) );
}
/* check if there is any data available to flush */
return ZSTDMT_flushProduced(mtctx, output, 1 /* blockToFlush */, endFrame);
}
size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output)
{
DEBUGLOG(5, "ZSTDMT_flushStream");
if (mtctx->singleBlockingThread)
return ZSTD_flushStream(mtctx->cctxPool->cctx[0], output);
return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_flush);
}
size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output)
{
DEBUGLOG(4, "ZSTDMT_endStream");
if (mtctx->singleBlockingThread)
return ZSTD_endStream(mtctx->cctxPool->cctx[0], output);
return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_end);
}