##// END OF EJS Templates
dirstate-tree: Remove DirstateMap::iter_node_data_mut...
dirstate-tree: Remove DirstateMap::iter_node_data_mut In an upcoming changeset we want DirstateMap to be able to work directly with nodes in their "on disk" representation, without always allocating corresponding in-memory data structures. Nodes would have two possible representations: one immutable "on disk" refering to the bytes buffer of the contents of the .hg/dirstate file, and one mutable with HashMap like the curren data structure. These nodes would have copy-on-write semantics: when an immutable node would need to be mutated, instead we allocate new mutable node for it and its ancestors. A mutable iterator of the entire tree would still be possible, but it would become much more expensive since we’d need to allocate mutable nodes for everything. Instead, remove this iterator. It was only used to clear ambiguous mtimes while serializing the `DirstateMap`. Instead clearing and serialization are now two separate passes. Clearing first uses an immutable iterator to collect the paths of nodes that need to be cleared, then accesses only those nodes mutably. Differential Revision: https://phab.mercurial-scm.org/D10744

File last commit:

r47577:e8ae91b1 default
r48121:73f23e76 default
Show More
revlog.rs
395 lines | 11.9 KiB | application/rls-services+xml | RustLexer
use std::borrow::Cow;
use std::io::Read;
use std::ops::Deref;
use std::path::Path;
use byteorder::{BigEndian, ByteOrder};
use crypto::digest::Digest;
use crypto::sha1::Sha1;
use flate2::read::ZlibDecoder;
use micro_timer::timed;
use zstd;
use super::index::Index;
use super::node::{NodePrefix, NODE_BYTES_LENGTH, NULL_NODE};
use super::nodemap;
use super::nodemap::{NodeMap, NodeMapError};
use super::nodemap_docket::NodeMapDocket;
use super::patch;
use crate::errors::HgError;
use crate::repo::Repo;
use crate::revlog::Revision;
#[derive(derive_more::From)]
pub enum RevlogError {
InvalidRevision,
/// Working directory is not supported
WDirUnsupported,
/// Found more than one entry whose ID match the requested prefix
AmbiguousPrefix,
#[from]
Other(HgError),
}
impl From<NodeMapError> for RevlogError {
fn from(error: NodeMapError) -> Self {
match error {
NodeMapError::MultipleResults => RevlogError::AmbiguousPrefix,
NodeMapError::RevisionNotInIndex(_) => RevlogError::corrupted(),
}
}
}
impl RevlogError {
fn corrupted() -> Self {
RevlogError::Other(HgError::corrupted("corrupted revlog"))
}
}
/// Read only implementation of revlog.
pub struct Revlog {
/// When index and data are not interleaved: bytes of the revlog index.
/// When index and data are interleaved: bytes of the revlog index and
/// data.
pub(crate) index: Index,
/// When index and data are not interleaved: bytes of the revlog data
data_bytes: Option<Box<dyn Deref<Target = [u8]> + Send>>,
/// When present on disk: the persistent nodemap for this revlog
nodemap: Option<nodemap::NodeTree>,
}
impl Revlog {
/// Open a revlog index file.
///
/// It will also open the associated data file if index and data are not
/// interleaved.
#[timed]
pub fn open(
repo: &Repo,
index_path: impl AsRef<Path>,
data_path: Option<&Path>,
) -> Result<Self, RevlogError> {
let index_path = index_path.as_ref();
let index_mmap = repo.store_vfs().mmap_open(&index_path)?;
let version = get_version(&index_mmap);
if version != 1 {
// A proper new version should have had a repo/store requirement.
return Err(RevlogError::corrupted());
}
let index = Index::new(Box::new(index_mmap))?;
let default_data_path = index_path.with_extension("d");
// type annotation required
// won't recognize Mmap as Deref<Target = [u8]>
let data_bytes: Option<Box<dyn Deref<Target = [u8]> + Send>> =
if index.is_inline() {
None
} else {
let data_path = data_path.unwrap_or(&default_data_path);
let data_mmap = repo.store_vfs().mmap_open(data_path)?;
Some(Box::new(data_mmap))
};
let nodemap = NodeMapDocket::read_from_file(repo, index_path)?.map(
|(docket, data)| {
nodemap::NodeTree::load_bytes(
Box::new(data),
docket.data_length,
)
},
);
Ok(Revlog {
index,
data_bytes,
nodemap,
})
}
/// Return number of entries of the `Revlog`.
pub fn len(&self) -> usize {
self.index.len()
}
/// Returns `true` if the `Revlog` has zero `entries`.
pub fn is_empty(&self) -> bool {
self.index.is_empty()
}
/// Return the full data associated to a node.
#[timed]
pub fn get_node_rev(
&self,
node: NodePrefix,
) -> Result<Revision, RevlogError> {
if let Some(nodemap) = &self.nodemap {
return nodemap
.find_bin(&self.index, node)?
.ok_or(RevlogError::InvalidRevision);
}
// Fallback to linear scan when a persistent nodemap is not present.
// This happens when the persistent-nodemap experimental feature is not
// enabled, or for small revlogs.
//
// TODO: consider building a non-persistent nodemap in memory to
// optimize these cases.
let mut found_by_prefix = None;
for rev in (0..self.len() as Revision).rev() {
let index_entry =
self.index.get_entry(rev).ok_or(HgError::corrupted(
"revlog references a revision not in the index",
))?;
if node == *index_entry.hash() {
return Ok(rev);
}
if node.is_prefix_of(index_entry.hash()) {
if found_by_prefix.is_some() {
return Err(RevlogError::AmbiguousPrefix);
}
found_by_prefix = Some(rev)
}
}
found_by_prefix.ok_or(RevlogError::InvalidRevision)
}
/// Returns whether the given revision exists in this revlog.
pub fn has_rev(&self, rev: Revision) -> bool {
self.index.get_entry(rev).is_some()
}
/// Return the full data associated to a revision.
///
/// All entries required to build the final data out of deltas will be
/// retrieved as needed, and the deltas will be applied to the inital
/// snapshot to rebuild the final data.
#[timed]
pub fn get_rev_data(&self, rev: Revision) -> Result<Vec<u8>, RevlogError> {
// Todo return -> Cow
let mut entry = self.get_entry(rev)?;
let mut delta_chain = vec![];
while let Some(base_rev) = entry.base_rev {
delta_chain.push(entry);
entry = self
.get_entry(base_rev)
.map_err(|_| RevlogError::corrupted())?;
}
// TODO do not look twice in the index
let index_entry = self
.index
.get_entry(rev)
.ok_or(RevlogError::InvalidRevision)?;
let data: Vec<u8> = if delta_chain.is_empty() {
entry.data()?.into()
} else {
Revlog::build_data_from_deltas(entry, &delta_chain)?
};
if self.check_hash(
index_entry.p1(),
index_entry.p2(),
index_entry.hash().as_bytes(),
&data,
) {
Ok(data)
} else {
Err(RevlogError::corrupted())
}
}
/// Check the hash of some given data against the recorded hash.
pub fn check_hash(
&self,
p1: Revision,
p2: Revision,
expected: &[u8],
data: &[u8],
) -> bool {
let e1 = self.index.get_entry(p1);
let h1 = match e1 {
Some(ref entry) => entry.hash(),
None => &NULL_NODE,
};
let e2 = self.index.get_entry(p2);
let h2 = match e2 {
Some(ref entry) => entry.hash(),
None => &NULL_NODE,
};
hash(data, h1.as_bytes(), h2.as_bytes()).as_slice() == expected
}
/// Build the full data of a revision out its snapshot
/// and its deltas.
#[timed]
fn build_data_from_deltas(
snapshot: RevlogEntry,
deltas: &[RevlogEntry],
) -> Result<Vec<u8>, RevlogError> {
let snapshot = snapshot.data()?;
let deltas = deltas
.iter()
.rev()
.map(RevlogEntry::data)
.collect::<Result<Vec<Cow<'_, [u8]>>, RevlogError>>()?;
let patches: Vec<_> =
deltas.iter().map(|d| patch::PatchList::new(d)).collect();
let patch = patch::fold_patch_lists(&patches);
Ok(patch.apply(&snapshot))
}
/// Return the revlog data.
fn data(&self) -> &[u8] {
match self.data_bytes {
Some(ref data_bytes) => &data_bytes,
None => panic!(
"forgot to load the data or trying to access inline data"
),
}
}
/// Get an entry of the revlog.
fn get_entry(&self, rev: Revision) -> Result<RevlogEntry, RevlogError> {
let index_entry = self
.index
.get_entry(rev)
.ok_or(RevlogError::InvalidRevision)?;
let start = index_entry.offset();
let end = start + index_entry.compressed_len();
let data = if self.index.is_inline() {
self.index.data(start, end)
} else {
&self.data()[start..end]
};
let entry = RevlogEntry {
rev,
bytes: data,
compressed_len: index_entry.compressed_len(),
uncompressed_len: index_entry.uncompressed_len(),
base_rev: if index_entry.base_revision() == rev {
None
} else {
Some(index_entry.base_revision())
},
};
Ok(entry)
}
}
/// The revlog entry's bytes and the necessary informations to extract
/// the entry's data.
#[derive(Debug)]
pub struct RevlogEntry<'a> {
rev: Revision,
bytes: &'a [u8],
compressed_len: usize,
uncompressed_len: usize,
base_rev: Option<Revision>,
}
impl<'a> RevlogEntry<'a> {
/// Extract the data contained in the entry.
pub fn data(&self) -> Result<Cow<'_, [u8]>, RevlogError> {
if self.bytes.is_empty() {
return Ok(Cow::Borrowed(&[]));
}
match self.bytes[0] {
// Revision data is the entirety of the entry, including this
// header.
b'\0' => Ok(Cow::Borrowed(self.bytes)),
// Raw revision data follows.
b'u' => Ok(Cow::Borrowed(&self.bytes[1..])),
// zlib (RFC 1950) data.
b'x' => Ok(Cow::Owned(self.uncompressed_zlib_data()?)),
// zstd data.
b'\x28' => Ok(Cow::Owned(self.uncompressed_zstd_data()?)),
// A proper new format should have had a repo/store requirement.
_format_type => Err(RevlogError::corrupted()),
}
}
fn uncompressed_zlib_data(&self) -> Result<Vec<u8>, RevlogError> {
let mut decoder = ZlibDecoder::new(self.bytes);
if self.is_delta() {
let mut buf = Vec::with_capacity(self.compressed_len);
decoder
.read_to_end(&mut buf)
.map_err(|_| RevlogError::corrupted())?;
Ok(buf)
} else {
let mut buf = vec![0; self.uncompressed_len];
decoder
.read_exact(&mut buf)
.map_err(|_| RevlogError::corrupted())?;
Ok(buf)
}
}
fn uncompressed_zstd_data(&self) -> Result<Vec<u8>, RevlogError> {
if self.is_delta() {
let mut buf = Vec::with_capacity(self.compressed_len);
zstd::stream::copy_decode(self.bytes, &mut buf)
.map_err(|_| RevlogError::corrupted())?;
Ok(buf)
} else {
let mut buf = vec![0; self.uncompressed_len];
let len = zstd::block::decompress_to_buffer(self.bytes, &mut buf)
.map_err(|_| RevlogError::corrupted())?;
if len != self.uncompressed_len {
Err(RevlogError::corrupted())
} else {
Ok(buf)
}
}
}
/// Tell if the entry is a snapshot or a delta
/// (influences on decompression).
fn is_delta(&self) -> bool {
self.base_rev.is_some()
}
}
/// Format version of the revlog.
pub fn get_version(index_bytes: &[u8]) -> u16 {
BigEndian::read_u16(&index_bytes[2..=3])
}
/// Calculate the hash of a revision given its data and its parents.
fn hash(data: &[u8], p1_hash: &[u8], p2_hash: &[u8]) -> Vec<u8> {
let mut hasher = Sha1::new();
let (a, b) = (p1_hash, p2_hash);
if a > b {
hasher.input(b);
hasher.input(a);
} else {
hasher.input(a);
hasher.input(b);
}
hasher.input(data);
let mut hash = vec![0; NODE_BYTES_LENGTH];
hasher.result(&mut hash);
hash
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::index::IndexEntryBuilder;
#[test]
fn version_test() {
let bytes = IndexEntryBuilder::new()
.is_first(true)
.with_version(1)
.build();
assert_eq!(get_version(&bytes), 1)
}
}