##// END OF EJS Templates
revisions: allow "x123" to refer to nodeid prefix "123"...
revisions: allow "x123" to refer to nodeid prefix "123" When resolving "123" to a revision, we try to interpret it as revnum before we try to interpret it as a nodeid hex prefix. This can lead to the shortest valid prefix being longer than necessary. This patch lets us write such nodeids in a shorter form by prefixing them with "x" instead of adding more hex digits until they're longer than the longest decimal revnum. On my hg repo with almost 69k revisions, turning this feature on saves on average 0.4% on the average nodeid length. That clearly doesn't justify this patch. However, it becomes more usefule when combined with the earlier patches in this series that let you disambiguate nodeid prefixes within a configured revset. Note that we attempt to resolve symbols as nodeid prefixes after we've exhausted all other posibilities, so this is a backwards compatible change (only queries that would previously fail may now succeed). I've still hidden this feature behind an experiemntal config option so we can roll it back if needed. Differential Revision: https://phab.mercurial-scm.org/D4041

File last commit:

r36804:ed46d484 default
r38891:7848f284 default
Show More
generate-working-copy-states.py
88 lines | 3.3 KiB | text/x-python | PythonLexer
/ tests / generate-working-copy-states.py
# Helper script used for generating history and working copy files and content.
# The file's name corresponds to its history. The number of changesets can
# be specified on the command line. With 2 changesets, files with names like
# content1_content2_content1-untracked are generated. The first two filename
# segments describe the contents in the two changesets. The third segment
# ("content1-untracked") describes the state in the working copy, i.e.
# the file has content "content1" and is untracked (since it was previously
# tracked, it has been forgotten).
#
# This script generates the filenames and their content, but it's up to the
# caller to tell hg about the state.
#
# There are two subcommands:
# filelist <numchangesets>
# state <numchangesets> (<changeset>|wc)
#
# Typical usage:
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'first'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'second'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 wc
# $ hg addremove --similarity 0
# $ hg forget *_*_*-untracked
# $ rm *_*_missing-*
from __future__ import absolute_import, print_function
import os
import sys
# Generates pairs of (filename, contents), where 'contents' is a list
# describing the file's content at each revision (or in the working copy).
# At each revision, it is either None or the file's actual content. When not
# None, it may be either new content or the same content as an earlier
# revisions, so all of (modified,clean,added,removed) can be tested.
def generatestates(maxchangesets, parentcontents):
depth = len(parentcontents)
if depth == maxchangesets + 1:
for tracked in (b'untracked', b'tracked'):
filename = b"_".join([(content is None and b'missing' or content)
for content in parentcontents]) + b"-" + tracked
yield (filename, parentcontents)
else:
for content in ({None, b'content' + (b"%d" % (depth + 1))} |
set(parentcontents)):
for combination in generatestates(maxchangesets,
parentcontents + [content]):
yield combination
# retrieve the command line arguments
target = sys.argv[1]
maxchangesets = int(sys.argv[2])
if target == 'state':
depth = sys.argv[3]
# sort to make sure we have stable output
combinations = sorted(generatestates(maxchangesets, []))
# compute file content
content = []
for filename, states in combinations:
if target == 'filelist':
print(filename.decode('ascii'))
elif target == 'state':
if depth == 'wc':
# Make sure there is content so the file gets written and can be
# tracked. It will be deleted outside of this script.
content.append((filename, states[maxchangesets] or b'TOBEDELETED'))
else:
content.append((filename, states[int(depth) - 1]))
else:
print("unknown target:", target, file=sys.stderr)
sys.exit(1)
# write actual content
for filename, data in content:
if data is not None:
f = open(filename, 'wb')
f.write(data + b'\n')
f.close()
elif os.path.exists(filename):
os.remove(filename)