##// END OF EJS Templates
rebase: allow in-memory merge of the working copy parent...
rebase: allow in-memory merge of the working copy parent Before this patch and when the rebase involved the working copy parent (and thus the working copy too), we would not do in-memory rebase even if requested to. The in-code comment explains that the reason had something to do with avoiding an extra update, but I don't know which update that refers to. Perhaps an earlier version of the code used to update to the destination before rebasing even if in-memory rebase was requested? That seems to not be done at least since aa660c1203a9 (rebase: do not bail on uncomitted changes if rebasing in-memory, 2017-12-07). To see if this still made it slower, I create a single tiny commit on top of one branch of the mozilla-unified repo (commit a1098c82 to be exact) and rebased it to another branch (commit d4e9a7be). Before this patch that took 11.8s and after this patch it took 8.6s (I only did two runs each, but the timings were very consistent). Differential Revision: https://phab.mercurial-scm.org/D2876

File last commit:

r36469:1fa35ca3 default
r36993:795eb53f default
Show More
bundles.txt
93 lines | 3.2 KiB | text/plain | TextLexer
A bundle is a container for repository data.
Bundles are used as standalone files as well as the interchange format
over the wire protocol used when two Mercurial peers communicate with
each other.
Headers
=======
Bundles produced since Mercurial 0.7 (September 2005) have a 4 byte
header identifying the major bundle type. The header always begins with
``HG`` and the follow 2 bytes indicate the bundle type/version. Some
bundle types have additional data after this 4 byte header.
The following sections describe each bundle header/type.
HG10
----
``HG10`` headers indicate a *changegroup bundle*. This is the original
bundle format, so it is sometimes referred to as *bundle1*. It has been
present since version 0.7 (released September 2005).
This header is followed by 2 bytes indicating the compression algorithm
used for data that follows. All subsequent data following this
compression identifier is compressed according to the algorithm/method
specified.
Supported algorithms include the following.
``BZ``
*bzip2* compression.
Bzip2 compressors emit a leading ``BZ`` header. Mercurial uses this
leading ``BZ`` as part of the bundle header. Therefore consumers
of bzip2 bundles need to *seed* the bzip2 decompressor with ``BZ`` or
seek the input stream back to the beginning of the algorithm component
of the bundle header so that decompressor input is valid. This behavior
is unique among supported compression algorithms.
Supported since version 0.7 (released December 2006).
``GZ``
*zlib* compression.
Supported since version 0.9.2 (released December 2006).
``UN``
*Uncompressed* or no compression. Unmodified changegroup data follows.
Supported since version 0.9.2 (released December 2006).
3rd party extensions may implement their own compression. However, no
authority reserves values for their compression algorithm identifiers.
HG2X
----
``HG2X`` headers (where ``X`` is any value) denote a *bundle2* bundle.
Bundle2 bundles are a container format for various kinds of repository
data and capabilities, beyond changegroup data (which was the only data
supported by ``HG10`` bundles.
``HG20`` is currently the only defined bundle2 version.
The ``HG20`` format is documented at :hg:`help internals.bundle2`.
Initial ``HG20`` support was added in Mercurial 3.0 (released May
2014). However, bundle2 bundles were hidden behind an experimental flag
until version 3.5 (released August 2015), when they were enabled in the
wire protocol. Various commands (including ``hg bundle``) did not
support generating bundle2 files until Mercurial 3.6 (released November
2015).
HGS1
----
*Experimental*
A ``HGS1`` header indicates a *streaming clone bundle*. This is a bundle
that contains raw revlog data from a repository store. (Typically revlog
data is exchanged in the form of changegroups.)
The purpose of *streaming clone bundles* are to *clone* repository data
very efficiently.
The ``HGS1`` header is always followed by 2 bytes indicating a
compression algorithm of the data that follows. Only ``UN``
(uncompressed data) is currently allowed.
``HGS1UN`` support was added as an experimental feature in version 3.6
(released November 2015) as part of the initial offering of the *clone
bundles* feature.