|
|
// discovery.rs
|
|
|
//
|
|
|
// Copyright 2019 Georges Racinet <georges.racinet@octobus.net>
|
|
|
//
|
|
|
// This software may be used and distributed according to the terms of the
|
|
|
// GNU General Public License version 2 or any later version.
|
|
|
|
|
|
//! Discovery operations
|
|
|
//!
|
|
|
//! This is a Rust counterpart to the `partialdiscovery` class of
|
|
|
//! `mercurial.setdiscovery`
|
|
|
|
|
|
use super::{Graph, GraphError, Revision, NULL_REVISION};
|
|
|
use crate::{ancestors::MissingAncestors, dagops, FastHashMap};
|
|
|
use rand::seq::SliceRandom;
|
|
|
use rand::{thread_rng, RngCore, SeedableRng};
|
|
|
use std::cmp::{max, min};
|
|
|
use std::collections::{HashSet, VecDeque};
|
|
|
|
|
|
type Rng = rand_pcg::Pcg32;
|
|
|
type Seed = [u8; 16];
|
|
|
|
|
|
pub struct PartialDiscovery<G: Graph + Clone> {
|
|
|
target_heads: Option<Vec<Revision>>,
|
|
|
graph: G, // plays the role of self._repo
|
|
|
common: MissingAncestors<G>,
|
|
|
undecided: Option<HashSet<Revision>>,
|
|
|
children_cache: Option<FastHashMap<Revision, Vec<Revision>>>,
|
|
|
missing: HashSet<Revision>,
|
|
|
rng: Rng,
|
|
|
respect_size: bool,
|
|
|
randomize: bool,
|
|
|
}
|
|
|
|
|
|
pub struct DiscoveryStats {
|
|
|
pub undecided: Option<usize>,
|
|
|
}
|
|
|
|
|
|
/// Update an existing sample to match the expected size
|
|
|
///
|
|
|
/// The sample is updated with revisions exponentially distant from each
|
|
|
/// element of `heads`.
|
|
|
///
|
|
|
/// If a target size is specified, the sampling will stop once this size is
|
|
|
/// reached. Otherwise sampling will happen until roots of the <revs> set are
|
|
|
/// reached.
|
|
|
///
|
|
|
/// - `revs`: set of revs we want to discover (if None, `assume` the whole dag
|
|
|
/// represented by `parentfn`
|
|
|
/// - `heads`: set of DAG head revs
|
|
|
/// - `sample`: a sample to update
|
|
|
/// - `parentfn`: a callable to resolve parents for a revision
|
|
|
/// - `quicksamplesize`: optional target size of the sample
|
|
|
fn update_sample<I>(
|
|
|
revs: Option<&HashSet<Revision>>,
|
|
|
heads: impl IntoIterator<Item = Revision>,
|
|
|
sample: &mut HashSet<Revision>,
|
|
|
parentsfn: impl Fn(Revision) -> Result<I, GraphError>,
|
|
|
quicksamplesize: Option<usize>,
|
|
|
) -> Result<(), GraphError>
|
|
|
where
|
|
|
I: Iterator<Item = Revision>,
|
|
|
{
|
|
|
let mut distances: FastHashMap<Revision, u32> = FastHashMap::default();
|
|
|
let mut visit: VecDeque<Revision> = heads.into_iter().collect();
|
|
|
let mut factor: u32 = 1;
|
|
|
let mut seen: HashSet<Revision> = HashSet::new();
|
|
|
while let Some(current) = visit.pop_front() {
|
|
|
if !seen.insert(current) {
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
let d = *distances.entry(current).or_insert(1);
|
|
|
if d > factor {
|
|
|
factor *= 2;
|
|
|
}
|
|
|
if d == factor {
|
|
|
sample.insert(current);
|
|
|
if let Some(sz) = quicksamplesize {
|
|
|
if sample.len() >= sz {
|
|
|
return Ok(());
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
for p in parentsfn(current)? {
|
|
|
if let Some(revs) = revs {
|
|
|
if !revs.contains(&p) {
|
|
|
continue;
|
|
|
}
|
|
|
}
|
|
|
distances.entry(p).or_insert(d + 1);
|
|
|
visit.push_back(p);
|
|
|
}
|
|
|
}
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
struct ParentsIterator {
|
|
|
parents: [Revision; 2],
|
|
|
cur: usize,
|
|
|
}
|
|
|
|
|
|
impl ParentsIterator {
|
|
|
fn graph_parents(
|
|
|
graph: &impl Graph,
|
|
|
r: Revision,
|
|
|
) -> Result<ParentsIterator, GraphError> {
|
|
|
Ok(ParentsIterator {
|
|
|
parents: graph.parents(r)?,
|
|
|
cur: 0,
|
|
|
})
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl Iterator for ParentsIterator {
|
|
|
type Item = Revision;
|
|
|
|
|
|
fn next(&mut self) -> Option<Revision> {
|
|
|
if self.cur > 1 {
|
|
|
return None;
|
|
|
}
|
|
|
let rev = self.parents[self.cur];
|
|
|
self.cur += 1;
|
|
|
if rev == NULL_REVISION {
|
|
|
return self.next();
|
|
|
}
|
|
|
Some(rev)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
impl<G: Graph + Clone> PartialDiscovery<G> {
|
|
|
/// Create a PartialDiscovery object, with the intent
|
|
|
/// of comparing our `::<target_heads>` revset to the contents of another
|
|
|
/// repo.
|
|
|
///
|
|
|
/// For now `target_heads` is passed as a vector, and will be used
|
|
|
/// at the first call to `ensure_undecided()`.
|
|
|
///
|
|
|
/// If we want to make the signature more flexible,
|
|
|
/// we'll have to make it a type argument of `PartialDiscovery` or a trait
|
|
|
/// object since we'll keep it in the meanwhile
|
|
|
///
|
|
|
/// The `respect_size` boolean controls how the sampling methods
|
|
|
/// will interpret the size argument requested by the caller. If it's
|
|
|
/// `false`, they are allowed to produce a sample whose size is more
|
|
|
/// appropriate to the situation (typically bigger).
|
|
|
///
|
|
|
/// The `randomize` boolean affects sampling, and specifically how
|
|
|
/// limiting or last-minute expanding is been done:
|
|
|
///
|
|
|
/// If `true`, both will perform random picking from `self.undecided`.
|
|
|
/// This is currently the best for actual discoveries.
|
|
|
///
|
|
|
/// If `false`, a reproductible picking strategy is performed. This is
|
|
|
/// useful for integration tests.
|
|
|
pub fn new(
|
|
|
graph: G,
|
|
|
target_heads: Vec<Revision>,
|
|
|
respect_size: bool,
|
|
|
randomize: bool,
|
|
|
) -> Self {
|
|
|
let mut seed = [0; 16];
|
|
|
if randomize {
|
|
|
thread_rng().fill_bytes(&mut seed);
|
|
|
}
|
|
|
Self::new_with_seed(graph, target_heads, seed, respect_size, randomize)
|
|
|
}
|
|
|
|
|
|
pub fn new_with_seed(
|
|
|
graph: G,
|
|
|
target_heads: Vec<Revision>,
|
|
|
seed: Seed,
|
|
|
respect_size: bool,
|
|
|
randomize: bool,
|
|
|
) -> Self {
|
|
|
PartialDiscovery {
|
|
|
undecided: None,
|
|
|
children_cache: None,
|
|
|
target_heads: Some(target_heads),
|
|
|
graph: graph.clone(),
|
|
|
common: MissingAncestors::new(graph, vec![]),
|
|
|
missing: HashSet::new(),
|
|
|
rng: Rng::from_seed(seed),
|
|
|
respect_size: respect_size,
|
|
|
randomize: randomize,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Extract at most `size` random elements from sample and return them
|
|
|
/// as a vector
|
|
|
fn limit_sample(
|
|
|
&mut self,
|
|
|
mut sample: Vec<Revision>,
|
|
|
size: usize,
|
|
|
) -> Vec<Revision> {
|
|
|
if !self.randomize {
|
|
|
sample.sort();
|
|
|
sample.truncate(size);
|
|
|
return sample;
|
|
|
}
|
|
|
let sample_len = sample.len();
|
|
|
if sample_len <= size {
|
|
|
return sample;
|
|
|
}
|
|
|
let rng = &mut self.rng;
|
|
|
let dropped_size = sample_len - size;
|
|
|
let limited_slice = if size < dropped_size {
|
|
|
sample.partial_shuffle(rng, size).0
|
|
|
} else {
|
|
|
sample.partial_shuffle(rng, dropped_size).1
|
|
|
};
|
|
|
limited_slice.to_owned()
|
|
|
}
|
|
|
|
|
|
/// Register revisions known as being common
|
|
|
pub fn add_common_revisions(
|
|
|
&mut self,
|
|
|
common: impl IntoIterator<Item = Revision>,
|
|
|
) -> Result<(), GraphError> {
|
|
|
let before_len = self.common.get_bases().len();
|
|
|
self.common.add_bases(common);
|
|
|
if self.common.get_bases().len() == before_len {
|
|
|
return Ok(());
|
|
|
}
|
|
|
if let Some(ref mut undecided) = self.undecided {
|
|
|
self.common.remove_ancestors_from(undecided)?;
|
|
|
}
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
/// Register revisions known as being missing
|
|
|
///
|
|
|
/// # Performance note
|
|
|
///
|
|
|
/// Except in the most trivial case, the first call of this method has
|
|
|
/// the side effect of computing `self.undecided` set for the first time,
|
|
|
/// and the related caches it might need for efficiency of its internal
|
|
|
/// computation. This is typically faster if more information is
|
|
|
/// available in `self.common`. Therefore, for good performance, the
|
|
|
/// caller should avoid calling this too early.
|
|
|
pub fn add_missing_revisions(
|
|
|
&mut self,
|
|
|
missing: impl IntoIterator<Item = Revision>,
|
|
|
) -> Result<(), GraphError> {
|
|
|
let mut tovisit: VecDeque<Revision> = missing.into_iter().collect();
|
|
|
if tovisit.is_empty() {
|
|
|
return Ok(());
|
|
|
}
|
|
|
self.ensure_children_cache()?;
|
|
|
self.ensure_undecided()?; // for safety of possible future refactors
|
|
|
let children = self.children_cache.as_ref().unwrap();
|
|
|
let mut seen: HashSet<Revision> = HashSet::new();
|
|
|
let undecided_mut = self.undecided.as_mut().unwrap();
|
|
|
while let Some(rev) = tovisit.pop_front() {
|
|
|
if !self.missing.insert(rev) {
|
|
|
// either it's known to be missing from a previous
|
|
|
// invocation, and there's no need to iterate on its
|
|
|
// children (we now they are all missing)
|
|
|
// or it's from a previous iteration of this loop
|
|
|
// and its children have already been queued
|
|
|
continue;
|
|
|
}
|
|
|
undecided_mut.remove(&rev);
|
|
|
match children.get(&rev) {
|
|
|
None => {
|
|
|
continue;
|
|
|
}
|
|
|
Some(this_children) => {
|
|
|
for child in this_children.iter().cloned() {
|
|
|
if seen.insert(child) {
|
|
|
tovisit.push_back(child);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
/// Do we have any information about the peer?
|
|
|
pub fn has_info(&self) -> bool {
|
|
|
self.common.has_bases()
|
|
|
}
|
|
|
|
|
|
/// Did we acquire full knowledge of our Revisions that the peer has?
|
|
|
pub fn is_complete(&self) -> bool {
|
|
|
self.undecided.as_ref().map_or(false, |s| s.is_empty())
|
|
|
}
|
|
|
|
|
|
/// Return the heads of the currently known common set of revisions.
|
|
|
///
|
|
|
/// If the discovery process is not complete (see `is_complete()`), the
|
|
|
/// caller must be aware that this is an intermediate state.
|
|
|
///
|
|
|
/// On the other hand, if it is complete, then this is currently
|
|
|
/// the only way to retrieve the end results of the discovery process.
|
|
|
///
|
|
|
/// We may introduce in the future an `into_common_heads` call that
|
|
|
/// would be more appropriate for normal Rust callers, dropping `self`
|
|
|
/// if it is complete.
|
|
|
pub fn common_heads(&self) -> Result<HashSet<Revision>, GraphError> {
|
|
|
self.common.bases_heads()
|
|
|
}
|
|
|
|
|
|
/// Force first computation of `self.undecided`
|
|
|
///
|
|
|
/// After this, `self.undecided.as_ref()` and `.as_mut()` can be
|
|
|
/// unwrapped to get workable immutable or mutable references without
|
|
|
/// any panic.
|
|
|
///
|
|
|
/// This is an imperative call instead of an access with added lazyness
|
|
|
/// to reduce easily the scope of mutable borrow for the caller,
|
|
|
/// compared to undecided(&'a mut self) -> &'a… that would keep it
|
|
|
/// as long as the resulting immutable one.
|
|
|
fn ensure_undecided(&mut self) -> Result<(), GraphError> {
|
|
|
if self.undecided.is_some() {
|
|
|
return Ok(());
|
|
|
}
|
|
|
let tgt = self.target_heads.take().unwrap();
|
|
|
self.undecided =
|
|
|
Some(self.common.missing_ancestors(tgt)?.into_iter().collect());
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
fn ensure_children_cache(&mut self) -> Result<(), GraphError> {
|
|
|
if self.children_cache.is_some() {
|
|
|
return Ok(());
|
|
|
}
|
|
|
self.ensure_undecided()?;
|
|
|
|
|
|
let mut children: FastHashMap<Revision, Vec<Revision>> =
|
|
|
FastHashMap::default();
|
|
|
for &rev in self.undecided.as_ref().unwrap() {
|
|
|
for p in ParentsIterator::graph_parents(&self.graph, rev)? {
|
|
|
children.entry(p).or_insert_with(|| Vec::new()).push(rev);
|
|
|
}
|
|
|
}
|
|
|
self.children_cache = Some(children);
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
/// Provide statistics about the current state of the discovery process
|
|
|
pub fn stats(&self) -> DiscoveryStats {
|
|
|
DiscoveryStats {
|
|
|
undecided: self.undecided.as_ref().map(|s| s.len()),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
pub fn take_quick_sample(
|
|
|
&mut self,
|
|
|
headrevs: impl IntoIterator<Item = Revision>,
|
|
|
size: usize,
|
|
|
) -> Result<Vec<Revision>, GraphError> {
|
|
|
self.ensure_undecided()?;
|
|
|
let mut sample = {
|
|
|
let undecided = self.undecided.as_ref().unwrap();
|
|
|
if undecided.len() <= size {
|
|
|
return Ok(undecided.iter().cloned().collect());
|
|
|
}
|
|
|
dagops::heads(&self.graph, undecided.iter())?
|
|
|
};
|
|
|
if sample.len() >= size {
|
|
|
return Ok(self.limit_sample(sample.into_iter().collect(), size));
|
|
|
}
|
|
|
update_sample(
|
|
|
None,
|
|
|
headrevs,
|
|
|
&mut sample,
|
|
|
|r| ParentsIterator::graph_parents(&self.graph, r),
|
|
|
Some(size),
|
|
|
)?;
|
|
|
Ok(sample.into_iter().collect())
|
|
|
}
|
|
|
|
|
|
/// Extract a sample from `self.undecided`, going from its heads and roots.
|
|
|
///
|
|
|
/// The `size` parameter is used to avoid useless computations if
|
|
|
/// it turns out to be bigger than the whole set of undecided Revisions.
|
|
|
///
|
|
|
/// The sample is taken by using `update_sample` from the heads, then
|
|
|
/// from the roots, working on the reverse DAG,
|
|
|
/// expressed by `self.children_cache`.
|
|
|
///
|
|
|
/// No effort is being made to complete or limit the sample to `size`
|
|
|
/// but this method returns another interesting size that it derives
|
|
|
/// from its knowledge of the structure of the various sets, leaving
|
|
|
/// to the caller the decision to use it or not.
|
|
|
fn bidirectional_sample(
|
|
|
&mut self,
|
|
|
size: usize,
|
|
|
) -> Result<(HashSet<Revision>, usize), GraphError> {
|
|
|
self.ensure_undecided()?;
|
|
|
{
|
|
|
// we don't want to compute children_cache before this
|
|
|
// but doing it after extracting self.undecided takes a mutable
|
|
|
// ref to self while a shareable one is still active.
|
|
|
let undecided = self.undecided.as_ref().unwrap();
|
|
|
if undecided.len() <= size {
|
|
|
return Ok((undecided.clone(), size));
|
|
|
}
|
|
|
}
|
|
|
|
|
|
self.ensure_children_cache()?;
|
|
|
let revs = self.undecided.as_ref().unwrap();
|
|
|
let mut sample: HashSet<Revision> = revs.clone();
|
|
|
|
|
|
// it's possible that leveraging the children cache would be more
|
|
|
// efficient here
|
|
|
dagops::retain_heads(&self.graph, &mut sample)?;
|
|
|
let revsheads = sample.clone(); // was again heads(revs) in python
|
|
|
|
|
|
// update from heads
|
|
|
update_sample(
|
|
|
Some(revs),
|
|
|
revsheads.iter().cloned(),
|
|
|
&mut sample,
|
|
|
|r| ParentsIterator::graph_parents(&self.graph, r),
|
|
|
None,
|
|
|
)?;
|
|
|
|
|
|
// update from roots
|
|
|
let revroots: HashSet<Revision> =
|
|
|
dagops::roots(&self.graph, revs)?.into_iter().collect();
|
|
|
let prescribed_size = max(size, min(revroots.len(), revsheads.len()));
|
|
|
|
|
|
let children = self.children_cache.as_ref().unwrap();
|
|
|
let empty_vec: Vec<Revision> = Vec::new();
|
|
|
update_sample(
|
|
|
Some(revs),
|
|
|
revroots,
|
|
|
&mut sample,
|
|
|
|r| Ok(children.get(&r).unwrap_or(&empty_vec).iter().cloned()),
|
|
|
None,
|
|
|
)?;
|
|
|
Ok((sample, prescribed_size))
|
|
|
}
|
|
|
|
|
|
/// Fill up sample up to the wished size with random undecided Revisions.
|
|
|
///
|
|
|
/// This is intended to be used as a last resort completion if the
|
|
|
/// regular sampling algorithm returns too few elements.
|
|
|
fn random_complete_sample(
|
|
|
&mut self,
|
|
|
sample: &mut Vec<Revision>,
|
|
|
size: usize,
|
|
|
) {
|
|
|
let sample_len = sample.len();
|
|
|
if size <= sample_len {
|
|
|
return;
|
|
|
}
|
|
|
let take_from: Vec<Revision> = self
|
|
|
.undecided
|
|
|
.as_ref()
|
|
|
.unwrap()
|
|
|
.iter()
|
|
|
.filter(|&r| !sample.contains(r))
|
|
|
.cloned()
|
|
|
.collect();
|
|
|
sample.extend(self.limit_sample(take_from, size - sample_len));
|
|
|
}
|
|
|
|
|
|
pub fn take_full_sample(
|
|
|
&mut self,
|
|
|
size: usize,
|
|
|
) -> Result<Vec<Revision>, GraphError> {
|
|
|
let (sample_set, prescribed_size) = self.bidirectional_sample(size)?;
|
|
|
let size = if self.respect_size {
|
|
|
size
|
|
|
} else {
|
|
|
prescribed_size
|
|
|
};
|
|
|
let mut sample =
|
|
|
self.limit_sample(sample_set.into_iter().collect(), size);
|
|
|
self.random_complete_sample(&mut sample, size);
|
|
|
Ok(sample)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
|
mod tests {
|
|
|
use super::*;
|
|
|
use crate::testing::SampleGraph;
|
|
|
|
|
|
/// A PartialDiscovery as for pushing all the heads of `SampleGraph`
|
|
|
///
|
|
|
/// To avoid actual randomness in these tests, we give it a fixed
|
|
|
/// random seed, but by default we'll test the random version.
|
|
|
fn full_disco() -> PartialDiscovery<SampleGraph> {
|
|
|
PartialDiscovery::new_with_seed(
|
|
|
SampleGraph,
|
|
|
vec![10, 11, 12, 13],
|
|
|
[0; 16],
|
|
|
true,
|
|
|
true,
|
|
|
)
|
|
|
}
|
|
|
|
|
|
/// A PartialDiscovery as for pushing the 12 head of `SampleGraph`
|
|
|
///
|
|
|
/// To avoid actual randomness in tests, we give it a fixed random seed.
|
|
|
fn disco12() -> PartialDiscovery<SampleGraph> {
|
|
|
PartialDiscovery::new_with_seed(
|
|
|
SampleGraph,
|
|
|
vec![12],
|
|
|
[0; 16],
|
|
|
true,
|
|
|
true,
|
|
|
)
|
|
|
}
|
|
|
|
|
|
fn sorted_undecided(
|
|
|
disco: &PartialDiscovery<SampleGraph>,
|
|
|
) -> Vec<Revision> {
|
|
|
let mut as_vec: Vec<Revision> =
|
|
|
disco.undecided.as_ref().unwrap().iter().cloned().collect();
|
|
|
as_vec.sort();
|
|
|
as_vec
|
|
|
}
|
|
|
|
|
|
fn sorted_missing(disco: &PartialDiscovery<SampleGraph>) -> Vec<Revision> {
|
|
|
let mut as_vec: Vec<Revision> =
|
|
|
disco.missing.iter().cloned().collect();
|
|
|
as_vec.sort();
|
|
|
as_vec
|
|
|
}
|
|
|
|
|
|
fn sorted_common_heads(
|
|
|
disco: &PartialDiscovery<SampleGraph>,
|
|
|
) -> Result<Vec<Revision>, GraphError> {
|
|
|
let mut as_vec: Vec<Revision> =
|
|
|
disco.common_heads()?.iter().cloned().collect();
|
|
|
as_vec.sort();
|
|
|
Ok(as_vec)
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_add_common_get_undecided() -> Result<(), GraphError> {
|
|
|
let mut disco = full_disco();
|
|
|
assert_eq!(disco.undecided, None);
|
|
|
assert!(!disco.has_info());
|
|
|
assert_eq!(disco.stats().undecided, None);
|
|
|
|
|
|
disco.add_common_revisions(vec![11, 12])?;
|
|
|
assert!(disco.has_info());
|
|
|
assert!(!disco.is_complete());
|
|
|
assert!(disco.missing.is_empty());
|
|
|
|
|
|
// add_common_revisions did not trigger a premature computation
|
|
|
// of `undecided`, let's check that and ask for them
|
|
|
assert_eq!(disco.undecided, None);
|
|
|
disco.ensure_undecided()?;
|
|
|
assert_eq!(sorted_undecided(&disco), vec![5, 8, 10, 13]);
|
|
|
assert_eq!(disco.stats().undecided, Some(4));
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
/// in this test, we pretend that our peer misses exactly (8+10)::
|
|
|
/// and we're comparing all our repo to it (as in a bare push)
|
|
|
#[test]
|
|
|
fn test_discovery() -> Result<(), GraphError> {
|
|
|
let mut disco = full_disco();
|
|
|
disco.add_common_revisions(vec![11, 12])?;
|
|
|
disco.add_missing_revisions(vec![8, 10])?;
|
|
|
assert_eq!(sorted_undecided(&disco), vec![5]);
|
|
|
assert_eq!(sorted_missing(&disco), vec![8, 10, 13]);
|
|
|
assert!(!disco.is_complete());
|
|
|
|
|
|
disco.add_common_revisions(vec![5])?;
|
|
|
assert_eq!(sorted_undecided(&disco), vec![]);
|
|
|
assert_eq!(sorted_missing(&disco), vec![8, 10, 13]);
|
|
|
assert!(disco.is_complete());
|
|
|
assert_eq!(sorted_common_heads(&disco)?, vec![5, 11, 12]);
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_add_missing_early_continue() -> Result<(), GraphError> {
|
|
|
eprintln!("test_add_missing_early_stop");
|
|
|
let mut disco = full_disco();
|
|
|
disco.add_common_revisions(vec![13, 3, 4])?;
|
|
|
disco.ensure_children_cache()?;
|
|
|
// 12 is grand-child of 6 through 9
|
|
|
// passing them in this order maximizes the chances of the
|
|
|
// early continue to do the wrong thing
|
|
|
disco.add_missing_revisions(vec![6, 9, 12])?;
|
|
|
assert_eq!(sorted_undecided(&disco), vec![5, 7, 10, 11]);
|
|
|
assert_eq!(sorted_missing(&disco), vec![6, 9, 12]);
|
|
|
assert!(!disco.is_complete());
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_limit_sample_no_need_to() {
|
|
|
let sample = vec![1, 2, 3, 4];
|
|
|
assert_eq!(full_disco().limit_sample(sample, 10), vec![1, 2, 3, 4]);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_limit_sample_less_than_half() {
|
|
|
assert_eq!(full_disco().limit_sample((1..6).collect(), 2), vec![4, 2]);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_limit_sample_more_than_half() {
|
|
|
assert_eq!(full_disco().limit_sample((1..4).collect(), 2), vec![3, 2]);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_limit_sample_no_random() {
|
|
|
let mut disco = full_disco();
|
|
|
disco.randomize = false;
|
|
|
assert_eq!(
|
|
|
disco.limit_sample(vec![1, 8, 13, 5, 7, 3], 4),
|
|
|
vec![1, 3, 5, 7]
|
|
|
);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_quick_sample_enough_undecided_heads() -> Result<(), GraphError> {
|
|
|
let mut disco = full_disco();
|
|
|
disco.undecided = Some((1..=13).collect());
|
|
|
|
|
|
let mut sample_vec = disco.take_quick_sample(vec![], 4)?;
|
|
|
sample_vec.sort();
|
|
|
assert_eq!(sample_vec, vec![10, 11, 12, 13]);
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_quick_sample_climbing_from_12() -> Result<(), GraphError> {
|
|
|
let mut disco = disco12();
|
|
|
disco.ensure_undecided()?;
|
|
|
|
|
|
let mut sample_vec = disco.take_quick_sample(vec![12], 4)?;
|
|
|
sample_vec.sort();
|
|
|
// r12's only parent is r9, whose unique grand-parent through the
|
|
|
// diamond shape is r4. This ends there because the distance from r4
|
|
|
// to the root is only 3.
|
|
|
assert_eq!(sample_vec, vec![4, 9, 12]);
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_children_cache() -> Result<(), GraphError> {
|
|
|
let mut disco = full_disco();
|
|
|
disco.ensure_children_cache()?;
|
|
|
|
|
|
let cache = disco.children_cache.unwrap();
|
|
|
assert_eq!(cache.get(&2).cloned(), Some(vec![4]));
|
|
|
assert_eq!(cache.get(&10).cloned(), None);
|
|
|
|
|
|
let mut children_4 = cache.get(&4).cloned().unwrap();
|
|
|
children_4.sort();
|
|
|
assert_eq!(children_4, vec![5, 6, 7]);
|
|
|
|
|
|
let mut children_7 = cache.get(&7).cloned().unwrap();
|
|
|
children_7.sort();
|
|
|
assert_eq!(children_7, vec![9, 11]);
|
|
|
|
|
|
Ok(())
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_complete_sample() {
|
|
|
let mut disco = full_disco();
|
|
|
let undecided: HashSet<Revision> =
|
|
|
[4, 7, 9, 2, 3].iter().cloned().collect();
|
|
|
disco.undecided = Some(undecided);
|
|
|
|
|
|
let mut sample = vec![0];
|
|
|
disco.random_complete_sample(&mut sample, 3);
|
|
|
assert_eq!(sample.len(), 3);
|
|
|
|
|
|
let mut sample = vec![2, 4, 7];
|
|
|
disco.random_complete_sample(&mut sample, 1);
|
|
|
assert_eq!(sample.len(), 3);
|
|
|
}
|
|
|
|
|
|
#[test]
|
|
|
fn test_bidirectional_sample() -> Result<(), GraphError> {
|
|
|
let mut disco = full_disco();
|
|
|
disco.undecided = Some((0..=13).into_iter().collect());
|
|
|
|
|
|
let (sample_set, size) = disco.bidirectional_sample(7)?;
|
|
|
assert_eq!(size, 7);
|
|
|
let mut sample: Vec<Revision> = sample_set.into_iter().collect();
|
|
|
sample.sort();
|
|
|
// our DAG is a bit too small for the results to be really interesting
|
|
|
// at least it shows that
|
|
|
// - we went both ways
|
|
|
// - we didn't take all Revisions (6 is not in the sample)
|
|
|
assert_eq!(sample, vec![0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13]);
|
|
|
Ok(())
|
|
|
}
|
|
|
}
|
|
|
|