##// END OF EJS Templates
branchmap: use revbranchcache when updating branch map...
branchmap: use revbranchcache when updating branch map The revbranchcache is read on demand before it will be used for updating the branch map. It is written back when the branchmap is written and it will thus use the same locking as branchmap. The revbranchcache instance is short-lived; it is only stored in the branchmap from .update() is invoked and until .write() is invoked. Branchmap already assume that the repo is locked in that case. The use of revbranchcache for branch map updates will make sure that the revbranchcache "always" is kept up-to-date. The perfbranchmap benchmark is somewhat bogus, especially when we can see that the caching makes a significant difference between the realistic case of a first run and the rare case of rerunning it with a full cache. Here are some 'base' numbers on mozilla-central: Before: ! wall 6.912745 comb 6.910000 user 6.840000 sys 0.070000 (best of 3) After - initial, cache is empty: ! wall 7.792569 comb 7.790000 user 7.720000 sys 0.070000 (best of 3) After - cache is full: ! wall 0.879688 comb 0.880000 user 0.870000 sys 0.010000 (best of 4) The overhead when running with empty cache comes from checking, missing and updating it every time. Most of the performance improvement comes from not having to extract the branch info from the changelog. The last doubling of performance comes from no longer having to convert all branch names to local encoding but reuse the few already converted branch names. On the hg repo: Before: ! wall 0.715703 comb 0.710000 user 0.710000 sys 0.000000 (best of 14) After: ! wall 0.105489 comb 0.110000 user 0.110000 sys 0.000000 (best of 87)

File last commit:

r20225:d2704c48 default
r23786:7d63398f default
Show More
treediscovery.py
150 lines | 5.1 KiB | text/x-python | PythonLexer
# discovery.py - protocol changeset discovery functions
#
# Copyright 2010 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from node import nullid, short
from i18n import _
import util, error
def findcommonincoming(repo, remote, heads=None, force=False):
"""Return a tuple (common, fetch, heads) used to identify the common
subset of nodes between repo and remote.
"common" is a list of (at least) the heads of the common subset.
"fetch" is a list of roots of the nodes that would be incoming, to be
supplied to changegroupsubset.
"heads" is either the supplied heads, or else the remote's heads.
"""
knownnode = repo.changelog.hasnode
search = []
fetch = set()
seen = set()
seenbranch = set()
base = set()
if not heads:
heads = remote.heads()
if repo.changelog.tip() == nullid:
base.add(nullid)
if heads != [nullid]:
return [nullid], [nullid], list(heads)
return [nullid], [], heads
# assume we're closer to the tip than the root
# and start by examining the heads
repo.ui.status(_("searching for changes\n"))
unknown = []
for h in heads:
if not knownnode(h):
unknown.append(h)
else:
base.add(h)
if not unknown:
return list(base), [], list(heads)
req = set(unknown)
reqcnt = 0
# search through remote branches
# a 'branch' here is a linear segment of history, with four parts:
# head, root, first parent, second parent
# (a branch always has two parents (or none) by definition)
unknown = util.deque(remote.branches(unknown))
while unknown:
r = []
while unknown:
n = unknown.popleft()
if n[0] in seen:
continue
repo.ui.debug("examining %s:%s\n"
% (short(n[0]), short(n[1])))
if n[0] == nullid: # found the end of the branch
pass
elif n in seenbranch:
repo.ui.debug("branch already found\n")
continue
elif n[1] and knownnode(n[1]): # do we know the base?
repo.ui.debug("found incomplete branch %s:%s\n"
% (short(n[0]), short(n[1])))
search.append(n[0:2]) # schedule branch range for scanning
seenbranch.add(n)
else:
if n[1] not in seen and n[1] not in fetch:
if knownnode(n[2]) and knownnode(n[3]):
repo.ui.debug("found new changeset %s\n" %
short(n[1]))
fetch.add(n[1]) # earliest unknown
for p in n[2:4]:
if knownnode(p):
base.add(p) # latest known
for p in n[2:4]:
if p not in req and not knownnode(p):
r.append(p)
req.add(p)
seen.add(n[0])
if r:
reqcnt += 1
repo.ui.progress(_('searching'), reqcnt, unit=_('queries'))
repo.ui.debug("request %d: %s\n" %
(reqcnt, " ".join(map(short, r))))
for p in xrange(0, len(r), 10):
for b in remote.branches(r[p:p + 10]):
repo.ui.debug("received %s:%s\n" %
(short(b[0]), short(b[1])))
unknown.append(b)
# do binary search on the branches we found
while search:
newsearch = []
reqcnt += 1
repo.ui.progress(_('searching'), reqcnt, unit=_('queries'))
for n, l in zip(search, remote.between(search)):
l.append(n[1])
p = n[0]
f = 1
for i in l:
repo.ui.debug("narrowing %d:%d %s\n" % (f, len(l), short(i)))
if knownnode(i):
if f <= 2:
repo.ui.debug("found new branch changeset %s\n" %
short(p))
fetch.add(p)
base.add(i)
else:
repo.ui.debug("narrowed branch search to %s:%s\n"
% (short(p), short(i)))
newsearch.append((p, i))
break
p, f = i, f * 2
search = newsearch
# sanity check our fetch list
for f in fetch:
if knownnode(f):
raise error.RepoError(_("already have changeset ")
+ short(f[:4]))
base = list(base)
if base == [nullid]:
if force:
repo.ui.warn(_("warning: repository is unrelated\n"))
else:
raise util.Abort(_("repository is unrelated"))
repo.ui.debug("found new changesets starting at " +
" ".join([short(f) for f in fetch]) + "\n")
repo.ui.progress(_('searching'), None)
repo.ui.debug("%d total queries\n" % reqcnt)
return base, list(fetch), heads