##// END OF EJS Templates
manifest: proxy to revlog instance instead of inheriting...
manifest: proxy to revlog instance instead of inheriting Previously, manifestrevlog inherited revlog.revlog and therefore exposed all its APIs. This inevitably resulted in consumers calling low-level revlog APIs. As part of abstracting storage, we want to formalize the interface for manifest storage. The revlog API is much too large to define as the interface. Like we did for filelog, this commit divorces the manifest class from revlog so that we can standardize on a smaller API surface. The way I went about this commit was I broke the inheritance, ran tests, and added proxies until all tests passed. Like filelog, there are a handful of attributes that don't belong on the interface. And like filelog, we'll tease these out in the future. As part of this, we formalize an interface for manifest storage and add checks that manifestrevlog conforms to the interface. Adding proxies will introduce some overhead due to extra attribute lookups and function calls. On the mozilla-unified repository: $ hg verify before: real 627.220 secs (user 525.870+0.000 sys 18.800+0.000) after: real 628.930 secs (user 532.050+0.000 sys 18.320+0.000) $ hg serve (for a clone) before: user 223.580+0.000 sys 14.270+0.000 after: user 227.720+0.000 sys 13.920+0.000 $ hg clone before: user 506.390+0.000 sys 29.720+0.000 after: user 513.080+0.000 sys 28.280+0.000 There appears to be some overhead here. But it appears to be 1-2%. I think that is an appropriate price to pay for storage abstraction, which will eventually let us have much nicer things. If the overhead is noticed in other operations (whose CPU time isn't likely dwarfed by fulltext resolution) or if we want to cut down on the overhead, we could dynamically build up a type whose methods are effectively aliased to a revlog instance's. I'm inclined to punt on that problem for now. We may have to do it for the changelog. At which point it could be implemented in a generic way and ported to filelog and manifestrevlog easily enough I would think. .. api:: manifest.manifestrevlog no longer inherits from revlog The manifestrevlog class now wraps a revlog instance instead of inheriting from revlog. Various attributes and methods on instances are no longer available. Differential Revision: https://phab.mercurial-scm.org/D4386

File last commit:

r37644:0a9c0d34 default
r39350:7f5e6d3e default
Show More
process.py
365 lines | 14.7 KiB | text/x-python | PythonLexer
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Implements ProcessPoolExecutor.
The follow diagram and text describe the data-flow through the system:
|======================= In-process =====================|== Out-of-process ==|
+----------+ +----------+ +--------+ +-----------+ +---------+
| | => | Work Ids | => | | => | Call Q | => | |
| | +----------+ | | +-----------+ | |
| | | ... | | | | ... | | |
| | | 6 | | | | 5, call() | | |
| | | 7 | | | | ... | | |
| Process | | ... | | Local | +-----------+ | Process |
| Pool | +----------+ | Worker | | #1..n |
| Executor | | Thread | | |
| | +----------- + | | +-----------+ | |
| | <=> | Work Items | <=> | | <= | Result Q | <= | |
| | +------------+ | | +-----------+ | |
| | | 6: call() | | | | ... | | |
| | | future | | | | 4, result | | |
| | | ... | | | | 3, except | | |
+----------+ +------------+ +--------+ +-----------+ +---------+
Executor.submit() called:
- creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict
- adds the id of the _WorkItem to the "Work Ids" queue
Local worker thread:
- reads work ids from the "Work Ids" queue and looks up the corresponding
WorkItem from the "Work Items" dict: if the work item has been cancelled then
it is simply removed from the dict, otherwise it is repackaged as a
_CallItem and put in the "Call Q". New _CallItems are put in the "Call Q"
until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because
calls placed in the "Call Q" can no longer be cancelled with Future.cancel().
- reads _ResultItems from "Result Q", updates the future stored in the
"Work Items" dict and deletes the dict entry
Process #1..n:
- reads _CallItems from "Call Q", executes the calls, and puts the resulting
_ResultItems in "Request Q"
"""
from __future__ import absolute_import
import atexit
from . import _base
import Queue as queue
import multiprocessing
import threading
import weakref
import sys
__author__ = 'Brian Quinlan (brian@sweetapp.com)'
# Workers are created as daemon threads and processes. This is done to allow the
# interpreter to exit when there are still idle processes in a
# ProcessPoolExecutor's process pool (i.e. shutdown() was not called). However,
# allowing workers to die with the interpreter has two undesirable properties:
# - The workers would still be running during interpretor shutdown,
# meaning that they would fail in unpredictable ways.
# - The workers could be killed while evaluating a work item, which could
# be bad if the callable being evaluated has external side-effects e.g.
# writing to a file.
#
# To work around this problem, an exit handler is installed which tells the
# workers to exit when their work queues are empty and then waits until the
# threads/processes finish.
_threads_queues = weakref.WeakKeyDictionary()
_shutdown = False
def _python_exit():
global _shutdown
_shutdown = True
items = list(_threads_queues.items()) if _threads_queues else ()
for t, q in items:
q.put(None)
for t, q in items:
t.join(sys.maxint)
# Controls how many more calls than processes will be queued in the call queue.
# A smaller number will mean that processes spend more time idle waiting for
# work while a larger number will make Future.cancel() succeed less frequently
# (Futures in the call queue cannot be cancelled).
EXTRA_QUEUED_CALLS = 1
class _WorkItem(object):
def __init__(self, future, fn, args, kwargs):
self.future = future
self.fn = fn
self.args = args
self.kwargs = kwargs
class _ResultItem(object):
def __init__(self, work_id, exception=None, result=None):
self.work_id = work_id
self.exception = exception
self.result = result
class _CallItem(object):
def __init__(self, work_id, fn, args, kwargs):
self.work_id = work_id
self.fn = fn
self.args = args
self.kwargs = kwargs
def _process_worker(call_queue, result_queue):
"""Evaluates calls from call_queue and places the results in result_queue.
This worker is run in a separate process.
Args:
call_queue: A multiprocessing.Queue of _CallItems that will be read and
evaluated by the worker.
result_queue: A multiprocessing.Queue of _ResultItems that will written
to by the worker.
shutdown: A multiprocessing.Event that will be set as a signal to the
worker that it should exit when call_queue is empty.
"""
while True:
call_item = call_queue.get(block=True)
if call_item is None:
# Wake up queue management thread
result_queue.put(None)
return
try:
r = call_item.fn(*call_item.args, **call_item.kwargs)
except:
e = sys.exc_info()[1]
result_queue.put(_ResultItem(call_item.work_id,
exception=e))
else:
result_queue.put(_ResultItem(call_item.work_id,
result=r))
def _add_call_item_to_queue(pending_work_items,
work_ids,
call_queue):
"""Fills call_queue with _WorkItems from pending_work_items.
This function never blocks.
Args:
pending_work_items: A dict mapping work ids to _WorkItems e.g.
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
work_ids: A queue.Queue of work ids e.g. Queue([5, 6, ...]). Work ids
are consumed and the corresponding _WorkItems from
pending_work_items are transformed into _CallItems and put in
call_queue.
call_queue: A multiprocessing.Queue that will be filled with _CallItems
derived from _WorkItems.
"""
while True:
if call_queue.full():
return
try:
work_id = work_ids.get(block=False)
except queue.Empty:
return
else:
work_item = pending_work_items[work_id]
if work_item.future.set_running_or_notify_cancel():
call_queue.put(_CallItem(work_id,
work_item.fn,
work_item.args,
work_item.kwargs),
block=True)
else:
del pending_work_items[work_id]
continue
def _queue_management_worker(executor_reference,
processes,
pending_work_items,
work_ids_queue,
call_queue,
result_queue):
"""Manages the communication between this process and the worker processes.
This function is run in a local thread.
Args:
executor_reference: A weakref.ref to the ProcessPoolExecutor that owns
this thread. Used to determine if the ProcessPoolExecutor has been
garbage collected and that this function can exit.
process: A list of the multiprocessing.Process instances used as
workers.
pending_work_items: A dict mapping work ids to _WorkItems e.g.
{5: <_WorkItem...>, 6: <_WorkItem...>, ...}
work_ids_queue: A queue.Queue of work ids e.g. Queue([5, 6, ...]).
call_queue: A multiprocessing.Queue that will be filled with _CallItems
derived from _WorkItems for processing by the process workers.
result_queue: A multiprocessing.Queue of _ResultItems generated by the
process workers.
"""
nb_shutdown_processes = [0]
def shutdown_one_process():
"""Tell a worker to terminate, which will in turn wake us again"""
call_queue.put(None)
nb_shutdown_processes[0] += 1
while True:
_add_call_item_to_queue(pending_work_items,
work_ids_queue,
call_queue)
result_item = result_queue.get(block=True)
if result_item is not None:
work_item = pending_work_items[result_item.work_id]
del pending_work_items[result_item.work_id]
if result_item.exception:
work_item.future.set_exception(result_item.exception)
else:
work_item.future.set_result(result_item.result)
# Delete references to object. See issue16284
del work_item
# Check whether we should start shutting down.
executor = executor_reference()
# No more work items can be added if:
# - The interpreter is shutting down OR
# - The executor that owns this worker has been collected OR
# - The executor that owns this worker has been shutdown.
if _shutdown or executor is None or executor._shutdown_thread:
# Since no new work items can be added, it is safe to shutdown
# this thread if there are no pending work items.
if not pending_work_items:
while nb_shutdown_processes[0] < len(processes):
shutdown_one_process()
# If .join() is not called on the created processes then
# some multiprocessing.Queue methods may deadlock on Mac OS
# X.
for p in processes:
p.join()
call_queue.close()
return
del executor
_system_limits_checked = False
_system_limited = None
def _check_system_limits():
global _system_limits_checked, _system_limited
if _system_limits_checked:
if _system_limited:
raise NotImplementedError(_system_limited)
_system_limits_checked = True
try:
import os
nsems_max = os.sysconf("SC_SEM_NSEMS_MAX")
except (AttributeError, ValueError):
# sysconf not available or setting not available
return
if nsems_max == -1:
# indetermine limit, assume that limit is determined
# by available memory only
return
if nsems_max >= 256:
# minimum number of semaphores available
# according to POSIX
return
_system_limited = "system provides too few semaphores (%d available, 256 necessary)" % nsems_max
raise NotImplementedError(_system_limited)
class ProcessPoolExecutor(_base.Executor):
def __init__(self, max_workers=None):
"""Initializes a new ProcessPoolExecutor instance.
Args:
max_workers: The maximum number of processes that can be used to
execute the given calls. If None or not given then as many
worker processes will be created as the machine has processors.
"""
_check_system_limits()
if max_workers is None:
self._max_workers = multiprocessing.cpu_count()
else:
if max_workers <= 0:
raise ValueError("max_workers must be greater than 0")
self._max_workers = max_workers
# Make the call queue slightly larger than the number of processes to
# prevent the worker processes from idling. But don't make it too big
# because futures in the call queue cannot be cancelled.
self._call_queue = multiprocessing.Queue(self._max_workers +
EXTRA_QUEUED_CALLS)
self._result_queue = multiprocessing.Queue()
self._work_ids = queue.Queue()
self._queue_management_thread = None
self._processes = set()
# Shutdown is a two-step process.
self._shutdown_thread = False
self._shutdown_lock = threading.Lock()
self._queue_count = 0
self._pending_work_items = {}
def _start_queue_management_thread(self):
# When the executor gets lost, the weakref callback will wake up
# the queue management thread.
def weakref_cb(_, q=self._result_queue):
q.put(None)
if self._queue_management_thread is None:
self._queue_management_thread = threading.Thread(
target=_queue_management_worker,
args=(weakref.ref(self, weakref_cb),
self._processes,
self._pending_work_items,
self._work_ids,
self._call_queue,
self._result_queue))
self._queue_management_thread.daemon = True
self._queue_management_thread.start()
_threads_queues[self._queue_management_thread] = self._result_queue
def _adjust_process_count(self):
for _ in range(len(self._processes), self._max_workers):
p = multiprocessing.Process(
target=_process_worker,
args=(self._call_queue,
self._result_queue))
p.start()
self._processes.add(p)
def submit(self, fn, *args, **kwargs):
with self._shutdown_lock:
if self._shutdown_thread:
raise RuntimeError('cannot schedule new futures after shutdown')
f = _base.Future()
w = _WorkItem(f, fn, args, kwargs)
self._pending_work_items[self._queue_count] = w
self._work_ids.put(self._queue_count)
self._queue_count += 1
# Wake up queue management thread
self._result_queue.put(None)
self._start_queue_management_thread()
self._adjust_process_count()
return f
submit.__doc__ = _base.Executor.submit.__doc__
def shutdown(self, wait=True):
with self._shutdown_lock:
self._shutdown_thread = True
if self._queue_management_thread:
# Wake up queue management thread
self._result_queue.put(None)
if wait:
self._queue_management_thread.join(sys.maxint)
# To reduce the risk of openning too many files, remove references to
# objects that use file descriptors.
self._queue_management_thread = None
self._call_queue = None
self._result_queue = None
self._processes = None
shutdown.__doc__ = _base.Executor.shutdown.__doc__
atexit.register(_python_exit)