##// END OF EJS Templates
util: teach lrucachedict to enforce a max total cost...
util: teach lrucachedict to enforce a max total cost Now that lrucachedict entries can have a numeric cost associated with them and we can easily pop the oldest item in the cache, it now becomes relatively trivial to implement support for enforcing a high water mark on the total cost of items in the cache. This commit teaches lrucachedict instances to have a max cost associated with them. When items are inserted, we pop old items until enough "cost" frees up to make room for the new item. This feature is close to zero cost when not used (modulo the insertion regressed introduced by the previous commit): $ ./hg perflrucachedict --size 4 --gets 1000000 --sets 1000000 --mixed 1000000 ! gets ! wall 0.607444 comb 0.610000 user 0.610000 sys 0.000000 (best of 17) ! wall 0.601653 comb 0.600000 user 0.600000 sys 0.000000 (best of 17) ! inserts ! wall 0.678261 comb 0.680000 user 0.680000 sys 0.000000 (best of 14) ! wall 0.685042 comb 0.680000 user 0.680000 sys 0.000000 (best of 15) ! sets ! wall 0.808770 comb 0.800000 user 0.800000 sys 0.000000 (best of 13) ! wall 0.834241 comb 0.830000 user 0.830000 sys 0.000000 (best of 12) ! mixed ! wall 0.782441 comb 0.780000 user 0.780000 sys 0.000000 (best of 13) ! wall 0.803804 comb 0.800000 user 0.800000 sys 0.000000 (best of 13) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 ! init ! wall 0.006952 comb 0.010000 user 0.010000 sys 0.000000 (best of 418) ! gets ! wall 0.613350 comb 0.610000 user 0.610000 sys 0.000000 (best of 17) ! wall 0.617415 comb 0.620000 user 0.620000 sys 0.000000 (best of 17) ! inserts ! wall 0.701270 comb 0.700000 user 0.700000 sys 0.000000 (best of 15) ! wall 0.700516 comb 0.700000 user 0.700000 sys 0.000000 (best of 15) ! sets ! wall 0.825720 comb 0.830000 user 0.830000 sys 0.000000 (best of 13) ! wall 0.837946 comb 0.840000 user 0.830000 sys 0.010000 (best of 12) ! mixed ! wall 0.821644 comb 0.820000 user 0.820000 sys 0.000000 (best of 13) ! wall 0.850559 comb 0.850000 user 0.850000 sys 0.000000 (best of 12) I reckon the slight slowdown on insert is due to added if checks. For caches with total cost limiting enabled: $ hg perflrucachedict --size 4 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 100 ! gets w/ cost limit ! wall 0.598737 comb 0.590000 user 0.590000 sys 0.000000 (best of 17) ! inserts w/ cost limit ! wall 1.694282 comb 1.700000 user 1.700000 sys 0.000000 (best of 6) ! mixed w/ cost limit ! wall 1.157655 comb 1.150000 user 1.150000 sys 0.000000 (best of 9) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 10000 ! gets w/ cost limit ! wall 0.598526 comb 0.600000 user 0.600000 sys 0.000000 (best of 17) ! inserts w/ cost limit ! wall 37.838315 comb 37.840000 user 37.840000 sys 0.000000 (best of 3) ! mixed w/ cost limit ! wall 18.060198 comb 18.060000 user 18.060000 sys 0.000000 (best of 3) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 10000 --mixedgetfreq 90 ! gets w/ cost limit ! wall 0.600024 comb 0.600000 user 0.600000 sys 0.000000 (best of 17) ! inserts w/ cost limit ! wall 37.154547 comb 37.120000 user 37.120000 sys 0.000000 (best of 3) ! mixed w/ cost limit ! wall 4.381602 comb 4.380000 user 4.370000 sys 0.010000 (best of 3) The functions we're benchmarking are slightly different, which could move numbers by a few milliseconds. But the slowdown on insert is too great to be explained by that. The slowness is due to insert heavy operations needing to call popoldest() repeatedly when the cache is at capacity. The next commit will address this. Differential Revision: https://phab.mercurial-scm.org/D4503

File last commit:

r38806:e7aa113b default
r39604:842cd0bd default
Show More
pvec.py
215 lines | 5.9 KiB | text/x-python | PythonLexer
# pvec.py - probabilistic vector clocks for Mercurial
#
# Copyright 2012 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
'''
A "pvec" is a changeset property based on the theory of vector clocks
that can be compared to discover relatedness without consulting a
graph. This can be useful for tasks like determining how a
disconnected patch relates to a repository.
Currently a pvec consist of 448 bits, of which 24 are 'depth' and the
remainder are a bit vector. It is represented as a 70-character base85
string.
Construction:
- a root changeset has a depth of 0 and a bit vector based on its hash
- a normal commit has a changeset where depth is increased by one and
one bit vector bit is flipped based on its hash
- a merge changeset pvec is constructed by copying changes from one pvec into
the other to balance its depth
Properties:
- for linear changes, difference in depth is always <= hamming distance
- otherwise, changes are probably divergent
- when hamming distance is < 200, we can reliably detect when pvecs are near
Issues:
- hamming distance ceases to work over distances of ~ 200
- detecting divergence is less accurate when the common ancestor is very close
to either revision or total distance is high
- this could probably be improved by modeling the relation between
delta and hdist
Uses:
- a patch pvec can be used to locate the nearest available common ancestor for
resolving conflicts
- ordering of patches can be established without a DAG
- two head pvecs can be compared to determine whether push/pull/merge is needed
and approximately how many changesets are involved
- can be used to find a heuristic divergence measure between changesets on
different branches
'''
from __future__ import absolute_import
from .node import nullrev
from . import (
pycompat,
util,
)
_size = 448 # 70 chars b85-encoded
_bytes = _size / 8
_depthbits = 24
_depthbytes = _depthbits / 8
_vecbytes = _bytes - _depthbytes
_vecbits = _vecbytes * 8
_radius = (_vecbits - 30) / 2 # high probability vectors are related
def _bin(bs):
'''convert a bytestring to a long'''
v = 0
for b in bs:
v = v * 256 + ord(b)
return v
def _str(v, l):
bs = ""
for p in pycompat.xrange(l):
bs = chr(v & 255) + bs
v >>= 8
return bs
def _split(b):
'''depth and bitvec'''
return _bin(b[:_depthbytes]), _bin(b[_depthbytes:])
def _join(depth, bitvec):
return _str(depth, _depthbytes) + _str(bitvec, _vecbytes)
def _hweight(x):
c = 0
while x:
if x & 1:
c += 1
x >>= 1
return c
_htab = [_hweight(x) for x in pycompat.xrange(256)]
def _hamming(a, b):
'''find the hamming distance between two longs'''
d = a ^ b
c = 0
while d:
c += _htab[d & 0xff]
d >>= 8
return c
def _mergevec(x, y, c):
# Ideally, this function would be x ^ y ^ ancestor, but finding
# ancestors is a nuisance. So instead we find the minimal number
# of changes to balance the depth and hamming distance
d1, v1 = x
d2, v2 = y
if d1 < d2:
d1, d2, v1, v2 = d2, d1, v2, v1
hdist = _hamming(v1, v2)
ddist = d1 - d2
v = v1
m = v1 ^ v2 # mask of different bits
i = 1
if hdist > ddist:
# if delta = 10 and hdist = 100, then we need to go up 55 steps
# to the ancestor and down 45
changes = (hdist - ddist + 1) / 2
else:
# must make at least one change
changes = 1
depth = d1 + changes
# copy changes from v2
if m:
while changes:
if m & i:
v ^= i
changes -= 1
i <<= 1
else:
v = _flipbit(v, c)
return depth, v
def _flipbit(v, node):
# converting bit strings to longs is slow
bit = (hash(node) & 0xffffffff) % _vecbits
return v ^ (1<<bit)
def ctxpvec(ctx):
'''construct a pvec for ctx while filling in the cache'''
r = ctx.repo()
if not util.safehasattr(r, "_pveccache"):
r._pveccache = {}
pvc = r._pveccache
if ctx.rev() not in pvc:
cl = r.changelog
for n in pycompat.xrange(ctx.rev() + 1):
if n not in pvc:
node = cl.node(n)
p1, p2 = cl.parentrevs(n)
if p1 == nullrev:
# start with a 'random' vector at root
pvc[n] = (0, _bin((node * 3)[:_vecbytes]))
elif p2 == nullrev:
d, v = pvc[p1]
pvc[n] = (d + 1, _flipbit(v, node))
else:
pvc[n] = _mergevec(pvc[p1], pvc[p2], node)
bs = _join(*pvc[ctx.rev()])
return pvec(util.b85encode(bs))
class pvec(object):
def __init__(self, hashorctx):
if isinstance(hashorctx, str):
self._bs = hashorctx
self._depth, self._vec = _split(util.b85decode(hashorctx))
else:
self._vec = ctxpvec(hashorctx)
def __str__(self):
return self._bs
def __eq__(self, b):
return self._vec == b._vec and self._depth == b._depth
def __lt__(self, b):
delta = b._depth - self._depth
if delta < 0:
return False # always correct
if _hamming(self._vec, b._vec) > delta:
return False
return True
def __gt__(self, b):
return b < self
def __or__(self, b):
delta = abs(b._depth - self._depth)
if _hamming(self._vec, b._vec) <= delta:
return False
return True
def __sub__(self, b):
if self | b:
raise ValueError("concurrent pvecs")
return self._depth - b._depth
def distance(self, b):
d = abs(b._depth - self._depth)
h = _hamming(self._vec, b._vec)
return max(d, h)
def near(self, b):
dist = abs(b.depth - self._depth)
if dist > _radius or _hamming(self._vec, b._vec) > _radius:
return False