##// END OF EJS Templates
contrib: add a set of scripts to run pytype in Docker...
contrib: add a set of scripts to run pytype in Docker Having a simple way to run pytype for developers can massively shorten development cycle. Using the same Docker image and scripts that we use on our CI guarantees that the result achieved locally will be very similar to (if not the same as) the output of our CI runners. Things to note: the Dockerfile needs to do a little dance around user permissions inside /home/ci-runner/ because: - on one hand, creating new files on the host (e.g. .pyi files inside .pytype/) should use host user's uid and gid - on the other hand, when we run the image as uid:gid of host user, it needs to be able to read/execute files inside the image that are owned by ci-runner Since local user's uid might be different from ci-runner's uid, we execute this very broad chmod command inside /home/ci-runner/, but then run the image as the host user's uid:gid. There might be a better way to do this.

File last commit:

r47781:da4e6d7a default
r52200:87bfd170 default
Show More
evolution.txt
56 lines | 2.1 KiB | text/plain | TextLexer
Obsolescence markers make it possible to mark changesets that have been
deleted or superseded in a new version of the changeset.
Unlike the previous way of handling such changes, by stripping the old
changesets from the repository, obsolescence markers can be propagated
between repositories. This allows for a safe and simple way of exchanging
mutable history and altering it after the fact. Changeset phases are
respected, such that only draft and secret changesets can be altered (see
:hg:`help phases` for details).
Obsolescence is tracked using "obsolescence markers", a piece of metadata
tracking which changesets have been made obsolete, potential successors for
a given changeset, the moment the changeset was marked as obsolete, and the
user who performed the rewriting operation. The markers are stored
separately from standard changeset data can be exchanged without any of the
precursor changesets, preventing unnecessary exchange of obsolescence data.
The complete set of obsolescence markers describes a history of changeset
modifications that is orthogonal to the repository history of file
modifications. This changeset history allows for detection and automatic
resolution of edge cases arising from multiple users rewriting the same part
of history concurrently.
Current feature status
======================
This feature is still in development.
Instability
===========
Rewriting changesets might introduce instability.
There are two main kinds of instability: orphaning and diverging.
Orphans are changesets left behind when their ancestors are rewritten.
Divergence has two variants:
* Content-divergence occurs when independent rewrites of the same changesets
lead to different results.
* Phase-divergence occurs when the old (obsolete) version of a changeset
becomes public.
It is possible to prevent local creation of orphans by using the following config::
[experimental]
evolution.createmarkers = true
evolution.exchange = true
You can also enable that option explicitly::
[experimental]
evolution.createmarkers = true
evolution.exchange = true
evolution.allowunstable = true