##// END OF EJS Templates
config: document the purpose of the `format` config section...
config: document the purpose of the `format` config section The config section now have a top level documentation to clarify its intend and usage. In particular, user are now explain when the option are taken in account and how to convert repository. There are an handful of experimental options in this section that does not match its definition. They should be relocated to other section before getting out of experimental. (see next changeset for one example).

File last commit:

r37513:b1fb341d default
r38758:8891dc15 default
Show More
common.py
151 lines | 4.4 KiB | text/x-python | PythonLexer
import imp
import inspect
import io
import os
import types
try:
import hypothesis
except ImportError:
hypothesis = None
def make_cffi(cls):
"""Decorator to add CFFI versions of each test method."""
# The module containing this class definition should
# `import zstandard as zstd`. Otherwise things may blow up.
mod = inspect.getmodule(cls)
if not hasattr(mod, 'zstd'):
raise Exception('test module does not contain "zstd" symbol')
if not hasattr(mod.zstd, 'backend'):
raise Exception('zstd symbol does not have "backend" attribute; did '
'you `import zstandard as zstd`?')
# If `import zstandard` already chose the cffi backend, there is nothing
# for us to do: we only add the cffi variation if the default backend
# is the C extension.
if mod.zstd.backend == 'cffi':
return cls
old_env = dict(os.environ)
os.environ['PYTHON_ZSTANDARD_IMPORT_POLICY'] = 'cffi'
try:
try:
mod_info = imp.find_module('zstandard')
mod = imp.load_module('zstandard_cffi', *mod_info)
except ImportError:
return cls
finally:
os.environ.clear()
os.environ.update(old_env)
if mod.backend != 'cffi':
raise Exception('got the zstandard %s backend instead of cffi' % mod.backend)
# If CFFI version is available, dynamically construct test methods
# that use it.
for attr in dir(cls):
fn = getattr(cls, attr)
if not inspect.ismethod(fn) and not inspect.isfunction(fn):
continue
if not fn.__name__.startswith('test_'):
continue
name = '%s_cffi' % fn.__name__
# Replace the "zstd" symbol with the CFFI module instance. Then copy
# the function object and install it in a new attribute.
if isinstance(fn, types.FunctionType):
globs = dict(fn.__globals__)
globs['zstd'] = mod
new_fn = types.FunctionType(fn.__code__, globs, name,
fn.__defaults__, fn.__closure__)
new_method = new_fn
else:
globs = dict(fn.__func__.func_globals)
globs['zstd'] = mod
new_fn = types.FunctionType(fn.__func__.func_code, globs, name,
fn.__func__.func_defaults,
fn.__func__.func_closure)
new_method = types.UnboundMethodType(new_fn, fn.im_self,
fn.im_class)
setattr(cls, name, new_method)
return cls
class OpCountingBytesIO(io.BytesIO):
def __init__(self, *args, **kwargs):
self._read_count = 0
self._write_count = 0
return super(OpCountingBytesIO, self).__init__(*args, **kwargs)
def read(self, *args):
self._read_count += 1
return super(OpCountingBytesIO, self).read(*args)
def write(self, data):
self._write_count += 1
return super(OpCountingBytesIO, self).write(data)
_source_files = []
def random_input_data():
"""Obtain the raw content of source files.
This is used for generating "random" data to feed into fuzzing, since it is
faster than random content generation.
"""
if _source_files:
return _source_files
for root, dirs, files in os.walk(os.path.dirname(__file__)):
dirs[:] = list(sorted(dirs))
for f in sorted(files):
try:
with open(os.path.join(root, f), 'rb') as fh:
data = fh.read()
if data:
_source_files.append(data)
except OSError:
pass
return _source_files
def generate_samples():
inputs = [
b'foo',
b'bar',
b'abcdef',
b'sometext',
b'baz',
]
samples = []
for i in range(128):
samples.append(inputs[i % 5])
samples.append(inputs[i % 5] * (i + 3))
samples.append(inputs[-(i % 5)] * (i + 2))
return samples
if hypothesis:
default_settings = hypothesis.settings()
hypothesis.settings.register_profile('default', default_settings)
ci_settings = hypothesis.settings(max_examples=2500,
max_iterations=2500)
hypothesis.settings.register_profile('ci', ci_settings)
hypothesis.settings.load_profile(
os.environ.get('HYPOTHESIS_PROFILE', 'default'))