##// END OF EJS Templates
sidedatacopies: only fetch information once for merge...
sidedatacopies: only fetch information once for merge Before this change, merge would result in reading the data from revlog twice. With this change, we keep the information in memory until we encounter the other parent. When looking at pypy, I see about 1/3 of the changesets with copy information being merge. Not doing duplicated fetch for them provide a significant speedup. revision: large amount; added files: large amount; rename small amount; c3b14617fbd7 9ba6ab77fd29 before: ! wall 0.767042 comb 0.760000 user 0.750000 sys 0.010000 (median of 11) after: ! wall 0.671162 comb 0.670000 user 0.650000 sys 0.020000 (median of 13) revision: large amount; added files: small amount; rename small amount; c3b14617fbd7 f650a9b140d2 before: ! wall 1.170169 comb 1.170000 user 1.130000 sys 0.040000 (median of 10) after: ! wall 1.030596 comb 1.040000 user 1.010000 sys 0.030000 (median of 10) revision: large amount; added files: large amount; rename large amount; 08ea3258278e d9fa043f30c0 before: ! wall 0.209846 comb 0.200000 user 0.200000 sys 0.000000 (median of 46) after: ! wall 0.170981 comb 0.170000 user 0.170000 sys 0.000000 (median of 56) revision: small amount; added files: large amount; rename large amount; df6f7a526b60 a83dc6a2d56f before: ! wall 0.013248 comb 0.010000 user 0.010000 sys 0.000000 (median of 223) after: ! wall 0.013295 comb 0.020000 user 0.020000 sys 0.000000 (median of 222) revision: small amount; added files: large amount; rename small amount; 4aa4e1f8e19a 169138063d63 before: ! wall 0.001672 comb 0.000000 user 0.000000 sys 0.000000 (median of 1000) after: ! wall 0.001666 comb 0.000000 user 0.000000 sys 0.000000 (median of 1000) revision: small amount; added files: small amount; rename small amount; 4bc173b045a6 964879152e2e before: ! wall 0.000119 comb 0.000000 user 0.000000 sys 0.000000 (median of 8010) after: ! wall 0.000119 comb 0.000000 user 0.000000 sys 0.000000 (median of 8007) revision: medium amount; added files: large amount; rename medium amount; c95f1ced15f2 2c68e87c3efe before: ! wall 0.168599 comb 0.160000 user 0.160000 sys 0.000000 (median of 58) after: ! wall 0.133316 comb 0.140000 user 0.140000 sys 0.000000 (median of 73) revision: medium amount; added files: medium amount; rename small amount; d343da0c55a8 d7746d32bf9d before: ! wall 0.036052 comb 0.030000 user 0.030000 sys 0.000000 (median of 100) after: ! wall 0.032558 comb 0.030000 user 0.030000 sys 0.000000 (median of 100) Differential Revision: https://phab.mercurial-scm.org/D7127

File last commit:

r42237:675775c3 default
r43595:90213d02 default
Show More
common.py
185 lines | 5.5 KiB | text/x-python | PythonLexer
import imp
import inspect
import io
import os
import types
try:
import hypothesis
except ImportError:
hypothesis = None
def make_cffi(cls):
"""Decorator to add CFFI versions of each test method."""
# The module containing this class definition should
# `import zstandard as zstd`. Otherwise things may blow up.
mod = inspect.getmodule(cls)
if not hasattr(mod, 'zstd'):
raise Exception('test module does not contain "zstd" symbol')
if not hasattr(mod.zstd, 'backend'):
raise Exception('zstd symbol does not have "backend" attribute; did '
'you `import zstandard as zstd`?')
# If `import zstandard` already chose the cffi backend, there is nothing
# for us to do: we only add the cffi variation if the default backend
# is the C extension.
if mod.zstd.backend == 'cffi':
return cls
old_env = dict(os.environ)
os.environ['PYTHON_ZSTANDARD_IMPORT_POLICY'] = 'cffi'
try:
try:
mod_info = imp.find_module('zstandard')
mod = imp.load_module('zstandard_cffi', *mod_info)
except ImportError:
return cls
finally:
os.environ.clear()
os.environ.update(old_env)
if mod.backend != 'cffi':
raise Exception('got the zstandard %s backend instead of cffi' % mod.backend)
# If CFFI version is available, dynamically construct test methods
# that use it.
for attr in dir(cls):
fn = getattr(cls, attr)
if not inspect.ismethod(fn) and not inspect.isfunction(fn):
continue
if not fn.__name__.startswith('test_'):
continue
name = '%s_cffi' % fn.__name__
# Replace the "zstd" symbol with the CFFI module instance. Then copy
# the function object and install it in a new attribute.
if isinstance(fn, types.FunctionType):
globs = dict(fn.__globals__)
globs['zstd'] = mod
new_fn = types.FunctionType(fn.__code__, globs, name,
fn.__defaults__, fn.__closure__)
new_method = new_fn
else:
globs = dict(fn.__func__.func_globals)
globs['zstd'] = mod
new_fn = types.FunctionType(fn.__func__.func_code, globs, name,
fn.__func__.func_defaults,
fn.__func__.func_closure)
new_method = types.UnboundMethodType(new_fn, fn.im_self,
fn.im_class)
setattr(cls, name, new_method)
return cls
class NonClosingBytesIO(io.BytesIO):
"""BytesIO that saves the underlying buffer on close().
This allows us to access written data after close().
"""
def __init__(self, *args, **kwargs):
super(NonClosingBytesIO, self).__init__(*args, **kwargs)
self._saved_buffer = None
def close(self):
self._saved_buffer = self.getvalue()
return super(NonClosingBytesIO, self).close()
def getvalue(self):
if self.closed:
return self._saved_buffer
else:
return super(NonClosingBytesIO, self).getvalue()
class OpCountingBytesIO(NonClosingBytesIO):
def __init__(self, *args, **kwargs):
self._flush_count = 0
self._read_count = 0
self._write_count = 0
return super(OpCountingBytesIO, self).__init__(*args, **kwargs)
def flush(self):
self._flush_count += 1
return super(OpCountingBytesIO, self).flush()
def read(self, *args):
self._read_count += 1
return super(OpCountingBytesIO, self).read(*args)
def write(self, data):
self._write_count += 1
return super(OpCountingBytesIO, self).write(data)
_source_files = []
def random_input_data():
"""Obtain the raw content of source files.
This is used for generating "random" data to feed into fuzzing, since it is
faster than random content generation.
"""
if _source_files:
return _source_files
for root, dirs, files in os.walk(os.path.dirname(__file__)):
dirs[:] = list(sorted(dirs))
for f in sorted(files):
try:
with open(os.path.join(root, f), 'rb') as fh:
data = fh.read()
if data:
_source_files.append(data)
except OSError:
pass
# Also add some actual random data.
_source_files.append(os.urandom(100))
_source_files.append(os.urandom(1000))
_source_files.append(os.urandom(10000))
_source_files.append(os.urandom(100000))
_source_files.append(os.urandom(1000000))
return _source_files
def generate_samples():
inputs = [
b'foo',
b'bar',
b'abcdef',
b'sometext',
b'baz',
]
samples = []
for i in range(128):
samples.append(inputs[i % 5])
samples.append(inputs[i % 5] * (i + 3))
samples.append(inputs[-(i % 5)] * (i + 2))
return samples
if hypothesis:
default_settings = hypothesis.settings(deadline=10000)
hypothesis.settings.register_profile('default', default_settings)
ci_settings = hypothesis.settings(deadline=20000, max_examples=1000)
hypothesis.settings.register_profile('ci', ci_settings)
expensive_settings = hypothesis.settings(deadline=None, max_examples=10000)
hypothesis.settings.register_profile('expensive', expensive_settings)
hypothesis.settings.load_profile(
os.environ.get('HYPOTHESIS_PROFILE', 'default'))