##// END OF EJS Templates
typing: add type annotations to the dirstate classes...
typing: add type annotations to the dirstate classes The basic procedure here was to use `merge-pyi` to merge the `git/dirstate.pyi` file in (after renaming the interface class to match), cleaning up the import statement mess, and then repeating the procedure for `mercurial/dirstate.pyi`. Surprisingly, git's dirstate had more hints inferred in its *.pyi file. After that, it was a manual examination of each method in the interface, and how they were implemented in the core and git classes to verify what was inferred by pytype, and fill in the missing gaps. Since this involved jumping around between three different files, I applied the same type info to all three at the same time. Complex types I rolled up into type aliases in the interface module, and used that as needed. That way if it changes, there's one place to edit. There are some hints still missing, and some documentation that doesn't match the signatures. They should all be marked with TODOs. There are also a bunch of methods on the core class that aren't on the Protocol class that seem like maybe they should be (like `set_tracked()`). There are even more methods missing from the git class. But that's a project for another time.

File last commit:

r52756:f4733654 default
r52822:93d872a0 default
Show More
mpatch.py
144 lines | 3.5 KiB | text/x-python | PythonLexer
# mpatch.py - Python implementation of mpatch.c
#
# Copyright 2009 Olivia Mackall <olivia@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import annotations
import io
import struct
from typing import (
List,
Tuple,
)
stringio = io.BytesIO
class mpatchError(Exception):
"""error raised when a delta cannot be decoded"""
# This attempts to apply a series of patches in time proportional to
# the total size of the patches, rather than patches * len(text). This
# means rather than shuffling strings around, we shuffle around
# pointers to fragments with fragment lists.
#
# When the fragment lists get too long, we collapse them. To do this
# efficiently, we do all our operations inside a buffer created by
# mmap and simply use memmove. This avoids creating a bunch of large
# temporary string buffers.
def _pull(
dst: List[Tuple[int, int]], src: List[Tuple[int, int]], l: int
) -> None: # pull l bytes from src
while l:
f = src.pop()
if f[0] > l: # do we need to split?
src.append((f[0] - l, f[1] + l))
dst.append((l, f[1]))
return
dst.append(f)
l -= f[0]
def _move(m: stringio, dest: int, src: int, count: int) -> None:
"""move count bytes from src to dest
The file pointer is left at the end of dest.
"""
m.seek(src)
buf = m.read(count)
m.seek(dest)
m.write(buf)
def _collect(
m: stringio, buf: int, list: List[Tuple[int, int]]
) -> Tuple[int, int]:
start = buf
for l, p in reversed(list):
_move(m, buf, p, l)
buf += l
return (buf - start, start)
def patches(a: bytes, bins: List[bytes]) -> bytes:
if not bins:
return a
plens = [len(x) for x in bins]
pl = sum(plens)
bl = len(a) + pl
tl = bl + bl + pl # enough for the patches and two working texts
b1, b2 = 0, bl
if not tl:
return a
m = stringio()
# load our original text
m.write(a)
frags = [(len(a), b1)]
# copy all the patches into our segment so we can memmove from them
pos = b2 + bl
m.seek(pos)
for p in bins:
m.write(p)
for plen in plens:
# if our list gets too long, execute it
if len(frags) > 128:
b2, b1 = b1, b2
frags = [_collect(m, b1, frags)]
new = []
end = pos + plen
last = 0
while pos < end:
m.seek(pos)
try:
p1, p2, l = struct.unpack(b">lll", m.read(12))
except struct.error:
raise mpatchError("patch cannot be decoded")
_pull(new, frags, p1 - last) # what didn't change
_pull([], frags, p2 - p1) # what got deleted
new.append((l, pos + 12)) # what got added
pos += l + 12
last = p2
frags.extend(reversed(new)) # what was left at the end
t = _collect(m, b2, frags)
m.seek(t[1])
return m.read(t[0])
def patchedsize(orig: int, delta: bytes) -> int:
outlen, last, bin = 0, 0, 0
binend = len(delta)
data = 12
while data <= binend:
decode = delta[bin : bin + 12]
start, end, length = struct.unpack(b">lll", decode)
if start > end:
break
bin = data + length
data = bin + 12
outlen += start - last
last = end
outlen += length
if bin != binend:
raise mpatchError("patch cannot be decoded")
outlen += orig - last
return outlen