##// END OF EJS Templates
rhg: Add support for automatic fallback to Python...
rhg: Add support for automatic fallback to Python `rhg` is a command-line application that can do a small subset of what `hg` can. It is written entirely in Rust, which avoids the cost of starting a Python interpreter and importing many Python modules. In a script that runs many `hg` commands, this cost can add up. However making users decide when to use `rhg` instead of `hg` is not practical as we want the subset of supported functionality to grow over time. Instead we introduce "fallback" behavior where, when `rhg` encounters something (a sub-command, a repository format, …) that is not implemented in Rust-only, it does nothing but silently start a subprocess of Python-based `hg` running the same command. That way `rhg` becomes a drop-in replacement for `hg` that sometimes goes faster. Whether Python is used should be an implementation detail not apparent to users (other than through speed). A new `fallback` value is added to the previously introduced `rhg.on-unsupported` configuration key. When in this mode, the new `rhg.fallback-executable` config is determine what command to use to run a Python-based `hg`. The previous `rhg.on-unsupported = abort-silent` configuration was designed to let a wrapper script call `rhg` and then fall back to `hg` based on the exit code. This is still available, but having fallback behavior built-in in rhg might be easier for users instead of leaving that script "as an exercise for the reader". Using a subprocess like this is not idea, especially when `rhg` is to be installed in `$PATH` as `hg`, since the other `hg.py` executable needs to still be available… somewhere. Eventually this could be replaced by using PyOxidizer to a have a single executable that embeds a Python interpreter, but only starts it when needed. Differential Revision: https://phab.mercurial-scm.org/D10093

File last commit:

r47341:1f55cd5b default
r47425:93e9f448 default
Show More
logging.rs
101 lines | 3.6 KiB | application/rls-services+xml | RustLexer
use crate::errors::{HgError, HgResultExt, IoErrorContext, IoResultExt};
use crate::repo::Vfs;
use std::io::Write;
/// An utility to append to a log file with the given name, and optionally
/// rotate it after it reaches a certain maximum size.
///
/// Rotation works by renaming "example.log" to "example.log.1", after renaming
/// "example.log.1" to "example.log.2" etc up to the given maximum number of
/// files.
pub struct LogFile<'a> {
vfs: Vfs<'a>,
name: &'a str,
max_size: Option<u64>,
max_files: u32,
}
impl<'a> LogFile<'a> {
pub fn new(vfs: Vfs<'a>, name: &'a str) -> Self {
Self {
vfs,
name,
max_size: None,
max_files: 0,
}
}
/// Rotate before writing to a log file that was already larger than the
/// given size, in bytes. `None` disables rotation.
pub fn max_size(mut self, value: Option<u64>) -> Self {
self.max_size = value;
self
}
/// Keep this many rotated files `{name}.1` up to `{name}.{max}`, in
/// addition to the original `{name}` file.
pub fn max_files(mut self, value: u32) -> Self {
self.max_files = value;
self
}
/// Append the given `bytes` as-is to the log file, after rotating if
/// needed.
///
/// No trailing newline is added. Make sure to include one in `bytes` if
/// desired.
pub fn write(&self, bytes: &[u8]) -> Result<(), HgError> {
let path = self.vfs.join(self.name);
let context = || IoErrorContext::WritingFile(path.clone());
let open = || {
std::fs::OpenOptions::new()
.create(true)
.append(true)
.open(&path)
.with_context(context)
};
let mut file = open()?;
if let Some(max_size) = self.max_size {
if file.metadata().with_context(context)?.len() >= max_size {
// For example with `max_files == 5`, the first iteration of
// this loop has `i == 4` and renames `{name}.4` to `{name}.5`.
// The last iteration renames `{name}.1` to
// `{name}.2`
for i in (1..self.max_files).rev() {
self.vfs
.rename(
format!("{}.{}", self.name, i),
format!("{}.{}", self.name, i + 1),
)
.io_not_found_as_none()?;
}
// Then rename `{name}` to `{name}.1`. This is the
// previously-opened `file`.
self.vfs
.rename(self.name, format!("{}.1", self.name))
.io_not_found_as_none()?;
// Finally, create a new `{name}` file and replace our `file`
// handle.
file = open()?;
}
}
file.write_all(bytes).with_context(context)?;
file.sync_all().with_context(context)
}
}
#[test]
fn test_rotation() {
let temp = tempfile::tempdir().unwrap();
let vfs = Vfs { base: temp.path() };
let logger = LogFile::new(vfs, "log").max_size(Some(3)).max_files(2);
logger.write(b"one\n").unwrap();
logger.write(b"two\n").unwrap();
logger.write(b"3\n").unwrap();
logger.write(b"four\n").unwrap();
logger.write(b"five\n").unwrap();
assert_eq!(vfs.read("log").unwrap(), b"five\n");
assert_eq!(vfs.read("log.1").unwrap(), b"3\nfour\n");
assert_eq!(vfs.read("log.2").unwrap(), b"two\n");
assert!(vfs.read("log.3").io_not_found_as_none().unwrap().is_none());
}