##// END OF EJS Templates
doc: show details of command options in pages generated by docutils...
doc: show details of command options in pages generated by docutils Before this patch, HTML/man pages generated by docutils don't show details of each command options, whether it should take argument or not for example, even though "hg help" does. This patch shows details of command options as same as "hg help" shows. This patch uses "--option <VALUE[+]>" style instead of "--option <VALUE> [+]" used in output of "hg help", because docutils requires that option argument strings starts with "<" and ends with ">".

File last commit:

r20034:1e5b38a9 default
r20081:93f9d116 default
Show More
worker.py
158 lines | 4.4 KiB | text/x-python | PythonLexer
# worker.py - master-slave parallelism support
#
# Copyright 2013 Facebook, Inc.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from i18n import _
import errno, os, signal, sys, threading
import util
def countcpus():
'''try to count the number of CPUs on the system'''
# posix
try:
n = int(os.sysconf('SC_NPROCESSORS_ONLN'))
if n > 0:
return n
except (AttributeError, ValueError):
pass
# windows
try:
n = int(os.environ['NUMBER_OF_PROCESSORS'])
if n > 0:
return n
except (KeyError, ValueError):
pass
return 1
def _numworkers(ui):
s = ui.config('worker', 'numcpus')
if s:
try:
n = int(s)
if n >= 1:
return n
except ValueError:
raise util.Abort(_('number of cpus must be an integer'))
return min(max(countcpus(), 4), 32)
if os.name == 'posix':
_startupcost = 0.01
else:
_startupcost = 1e30
def worthwhile(ui, costperop, nops):
'''try to determine whether the benefit of multiple processes can
outweigh the cost of starting them'''
linear = costperop * nops
workers = _numworkers(ui)
benefit = linear - (_startupcost * workers + linear / workers)
return benefit >= 0.15
def worker(ui, costperarg, func, staticargs, args):
'''run a function, possibly in parallel in multiple worker
processes.
returns a progress iterator
costperarg - cost of a single task
func - function to run
staticargs - arguments to pass to every invocation of the function
args - arguments to split into chunks, to pass to individual
workers
'''
if worthwhile(ui, costperarg, len(args)):
return _platformworker(ui, func, staticargs, args)
return func(*staticargs + (args,))
def _posixworker(ui, func, staticargs, args):
rfd, wfd = os.pipe()
workers = _numworkers(ui)
oldhandler = signal.getsignal(signal.SIGINT)
signal.signal(signal.SIGINT, signal.SIG_IGN)
pids, problem = [], [0]
for pargs in partition(args, workers):
pid = os.fork()
if pid == 0:
signal.signal(signal.SIGINT, oldhandler)
try:
os.close(rfd)
for i, item in func(*(staticargs + (pargs,))):
os.write(wfd, '%d %s\n' % (i, item))
os._exit(0)
except KeyboardInterrupt:
os._exit(255)
# other exceptions are allowed to propagate, we rely
# on lock.py's pid checks to avoid release callbacks
pids.append(pid)
pids.reverse()
os.close(wfd)
fp = os.fdopen(rfd, 'rb', 0)
def killworkers():
# if one worker bails, there's no good reason to wait for the rest
for p in pids:
try:
os.kill(p, signal.SIGTERM)
except OSError, err:
if err.errno != errno.ESRCH:
raise
def waitforworkers():
for _ in pids:
st = _exitstatus(os.wait()[1])
if st and not problem[0]:
problem[0] = st
killworkers()
t = threading.Thread(target=waitforworkers)
t.start()
def cleanup():
signal.signal(signal.SIGINT, oldhandler)
t.join()
status = problem[0]
if status:
if status < 0:
os.kill(os.getpid(), -status)
sys.exit(status)
try:
for line in fp:
l = line.split(' ', 1)
yield int(l[0]), l[1][:-1]
except: # re-raises
killworkers()
cleanup()
raise
cleanup()
def _posixexitstatus(code):
'''convert a posix exit status into the same form returned by
os.spawnv
returns None if the process was stopped instead of exiting'''
if os.WIFEXITED(code):
return os.WEXITSTATUS(code)
elif os.WIFSIGNALED(code):
return -os.WTERMSIG(code)
if os.name != 'nt':
_platformworker = _posixworker
_exitstatus = _posixexitstatus
def partition(lst, nslices):
'''partition a list into N slices of equal size'''
n = len(lst)
chunk, slop = n / nslices, n % nslices
end = 0
for i in xrange(nslices):
start = end
end = start + chunk
if slop:
end += 1
slop -= 1
yield lst[start:end]