##// END OF EJS Templates
perf: add command for measuring revlog chunk operations...
perf: add command for measuring revlog chunk operations Upcoming commits will teach revlogs to leverage the new compression engine API so that new compression formats can more easily be leveraged in revlogs. We want to be sure this refactoring doesn't regress performance. So this commit introduces "perfrevchunks" to explicitly test performance of reading, decompressing, and recompressing revlog chunks. Here is output when run on the mozilla-unified repo: $ hg perfrevlogchunks -c ! read ! wall 0.346603 comb 0.350000 user 0.340000 sys 0.010000 (best of 28) ! read w/ reused fd ! wall 0.337707 comb 0.340000 user 0.320000 sys 0.020000 (best of 30) ! read batch ! wall 0.013206 comb 0.020000 user 0.000000 sys 0.020000 (best of 221) ! read batch w/ reused fd ! wall 0.013259 comb 0.030000 user 0.010000 sys 0.020000 (best of 222) ! chunk ! wall 1.909939 comb 1.910000 user 1.900000 sys 0.010000 (best of 6) ! chunk batch ! wall 1.750677 comb 1.760000 user 1.740000 sys 0.020000 (best of 6) ! compress ! wall 5.668004 comb 5.670000 user 5.670000 sys 0.000000 (best of 3) $ hg perfrevlogchunks -m ! read ! wall 0.365834 comb 0.370000 user 0.350000 sys 0.020000 (best of 26) ! read w/ reused fd ! wall 0.350160 comb 0.350000 user 0.320000 sys 0.030000 (best of 28) ! read batch ! wall 0.024777 comb 0.020000 user 0.000000 sys 0.020000 (best of 119) ! read batch w/ reused fd ! wall 0.024895 comb 0.030000 user 0.000000 sys 0.030000 (best of 118) ! chunk ! wall 2.514061 comb 2.520000 user 2.480000 sys 0.040000 (best of 4) ! chunk batch ! wall 2.380788 comb 2.380000 user 2.360000 sys 0.020000 (best of 5) ! compress ! wall 9.815297 comb 9.820000 user 9.820000 sys 0.000000 (best of 3) We already see some interesting data, such as how much slower non-batched chunk reading is and that zlib compression appears to be >2x slower than decompression. I didn't have the data when I wrote this commit message, but I ran this on Mozilla's NFS-based Mercurial server and the time for reading with a reused file descriptor was faster. So I think it is worth testing both with and without file descriptor reuse so we can make informed decisions about recycling file descriptors.

File last commit:

r25125:bd625cd4 default
r30451:94ca0e13 default
Show More
test-update-reverse.t
82 lines | 1.6 KiB | text/troff | Tads3Lexer
/ tests / test-update-reverse.t
$ hg init
$ touch a
$ hg add a
$ hg commit -m "Added a"
$ touch main
$ hg add main
$ hg commit -m "Added main"
$ hg checkout 0
0 files updated, 0 files merged, 1 files removed, 0 files unresolved
'main' should be gone:
$ ls
a
$ touch side1
$ hg add side1
$ hg commit -m "Added side1"
created new head
$ touch side2
$ hg add side2
$ hg commit -m "Added side2"
$ hg log
changeset: 3:91ebc10ed028
tag: tip
user: test
date: Thu Jan 01 00:00:00 1970 +0000
summary: Added side2
changeset: 2:b932d7dbb1e1
parent: 0:c2eda428b523
user: test
date: Thu Jan 01 00:00:00 1970 +0000
summary: Added side1
changeset: 1:71a760306caf
user: test
date: Thu Jan 01 00:00:00 1970 +0000
summary: Added main
changeset: 0:c2eda428b523
user: test
date: Thu Jan 01 00:00:00 1970 +0000
summary: Added a
$ hg heads
changeset: 3:91ebc10ed028
tag: tip
user: test
date: Thu Jan 01 00:00:00 1970 +0000
summary: Added side2
changeset: 1:71a760306caf
user: test
date: Thu Jan 01 00:00:00 1970 +0000
summary: Added main
$ ls
a
side1
side2
$ hg update --debug -C 1
resolving manifests
branchmerge: False, force: True, partial: False
ancestor: 91ebc10ed028+, local: 91ebc10ed028+, remote: 71a760306caf
side1: other deleted -> r
removing side1
side2: other deleted -> r
removing side2
main: remote created -> g
getting main
1 files updated, 0 files merged, 2 files removed, 0 files unresolved
$ ls
a
main