##// END OF EJS Templates
packaging: support building Inno installer with PyOxidizer...
packaging: support building Inno installer with PyOxidizer We want to start distributing Mercurial on Python 3 on Windows. PyOxidizer will be our vehicle for achieving that. This commit implements basic support for producing Inno installers using PyOxidizer. While it is an eventual goal of PyOxidizer to produce installers, those features aren't yet implemented. So our strategy for producing Mercurial installers is similar to what we've been doing with py2exe: invoke a build system to produce files then stage those files into a directory so they can be turned into an installer. We had to make significant alterations to the pyoxidizer.bzl config file to get it to produce the files that we desire for a Windows install. This meant differentiating the build targets so we can target Windows specifically. We've added a new module to hgpackaging to deal with interacting with PyOxidizer. It is similar to pyexe: we invoke a build process then copy files to a staging directory. Ideally these extra files would be defined in pyoxidizer.bzl. But I don't think it is worth doing at this time, as PyOxidizer's config files are lacking some features to make this turnkey. The rest of the change is introducing a variant of the Inno installer code that invokes PyOxidizer instead of py2exe. Comparing the Python 2.7 based Inno installers with this one, the following changes were observed: * No lib/*.{pyd, dll} files * No Microsoft.VC90.CRT.manifest * No msvc{m,p,r}90.dll files * python27.dll replaced with python37.dll * Add vcruntime140.dll file The disappearance of the .pyd and .dll files is acceptable, as PyOxidizer has embedded these in hg.exe and loads them from memory. The disappearance of the *90* files is acceptable because those provide the Visual C++ 9 runtime, as required by Python 2.7. Similarly, the appearance of vcruntime140.dll is a requirement of Python 3.7. Differential Revision: https://phab.mercurial-scm.org/D8473

File last commit:

r44991:cefd130c default
r45270:94f4f2ec stable
Show More
cindex.rs
179 lines | 5.6 KiB | application/rls-services+xml | RustLexer
// cindex.rs
//
// Copyright 2018 Georges Racinet <gracinet@anybox.fr>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Bindings to use the Index defined by the parsers C extension
//!
//! Ideally, we should use an Index entirely implemented in Rust,
//! but this will take some time to get there.
use cpython::{
exc::ImportError, ObjectProtocol, PyClone, PyErr, PyObject, PyResult,
PyTuple, Python, PythonObject,
};
use hg::revlog::{Node, RevlogIndex};
use hg::{Graph, GraphError, Revision, WORKING_DIRECTORY_REVISION};
use libc::c_int;
const REVLOG_CABI_VERSION: c_int = 2;
#[repr(C)]
pub struct Revlog_CAPI {
abi_version: c_int,
index_length:
unsafe extern "C" fn(index: *mut revlog_capi::RawPyObject) -> c_int,
index_node: unsafe extern "C" fn(
index: *mut revlog_capi::RawPyObject,
rev: c_int,
) -> *const Node,
index_parents: unsafe extern "C" fn(
index: *mut revlog_capi::RawPyObject,
rev: c_int,
ps: *mut [c_int; 2],
) -> c_int,
}
py_capsule!(
from mercurial.cext.parsers import revlog_CAPI
as revlog_capi for Revlog_CAPI);
/// A `Graph` backed up by objects and functions from revlog.c
///
/// This implementation of the `Graph` trait, relies on (pointers to)
/// - the C index object (`index` member)
/// - the `index_get_parents()` function (`parents` member)
///
/// # Safety
///
/// The C index itself is mutable, and this Rust exposition is **not
/// protected by the GIL**, meaning that this construct isn't safe with respect
/// to Python threads.
///
/// All callers of this `Index` must acquire the GIL and must not release it
/// while working.
///
/// # TODO find a solution to make it GIL safe again.
///
/// This is non trivial, and can wait until we have a clearer picture with
/// more Rust Mercurial constructs.
///
/// One possibility would be to a `GILProtectedIndex` wrapper enclosing
/// a `Python<'p>` marker and have it be the one implementing the
/// `Graph` trait, but this would mean the `Graph` implementor would become
/// likely to change between subsequent method invocations of the `hg-core`
/// objects (a serious change of the `hg-core` API):
/// either exposing ways to mutate the `Graph`, or making it a non persistent
/// parameter in the relevant methods that need one.
///
/// Another possibility would be to introduce an abstract lock handle into
/// the core API, that would be tied to `GILGuard` / `Python<'p>`
/// in the case of the `cpython` crate bindings yet could leave room for other
/// mechanisms in other contexts.
pub struct Index {
index: PyObject,
capi: &'static Revlog_CAPI,
}
impl Index {
pub fn new(py: Python, index: PyObject) -> PyResult<Self> {
let capi = unsafe { revlog_capi::retrieve(py)? };
if capi.abi_version != REVLOG_CABI_VERSION {
return Err(PyErr::new::<ImportError, _>(
py,
format!(
"ABI version mismatch: the C ABI revlog version {} \
does not match the {} expected by Rust hg-cpython",
capi.abi_version, REVLOG_CABI_VERSION
),
));
}
Ok(Index {
index: index,
capi: capi,
})
}
/// return a reference to the CPython Index object in this Struct
pub fn inner(&self) -> &PyObject {
&self.index
}
pub fn append(&mut self, py: Python, tup: PyTuple) -> PyResult<PyObject> {
self.index.call_method(
py,
"append",
PyTuple::new(py, &[tup.into_object()]),
None,
)
}
}
impl Clone for Index {
fn clone(&self) -> Self {
let guard = Python::acquire_gil();
Index {
index: self.index.clone_ref(guard.python()),
capi: self.capi,
}
}
}
impl PyClone for Index {
fn clone_ref(&self, py: Python) -> Self {
Index {
index: self.index.clone_ref(py),
capi: self.capi,
}
}
}
impl Graph for Index {
/// wrap a call to the C extern parents function
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
if rev == WORKING_DIRECTORY_REVISION {
return Err(GraphError::WorkingDirectoryUnsupported);
}
let mut res: [c_int; 2] = [0; 2];
let code = unsafe {
(self.capi.index_parents)(
self.index.as_ptr(),
rev as c_int,
&mut res as *mut [c_int; 2],
)
};
match code {
0 => Ok(res),
_ => Err(GraphError::ParentOutOfRange(rev)),
}
}
}
impl RevlogIndex for Index {
/// Note C return type is Py_ssize_t (hence signed), but we shall
/// force it to unsigned, because it's a length
fn len(&self) -> usize {
unsafe { (self.capi.index_length)(self.index.as_ptr()) as usize }
}
fn node<'a>(&'a self, rev: Revision) -> Option<&'a Node> {
let raw = unsafe {
(self.capi.index_node)(self.index.as_ptr(), rev as c_int)
};
if raw.is_null() {
None
} else {
// TODO it would be much better for the C layer to give us
// a length, since the hash length will change in the near
// future, but that's probably out of scope for the nodemap
// patch series.
//
// The root of that unsafety relies in the signature of
// `capi.index_node()` itself: returning a `Node` pointer
// whereas it's a `char *` in the C counterpart.
Some(unsafe { &*raw })
}
}
}