##// END OF EJS Templates
repoview: fix corrupted hiddencache crash Mercurial (issue5042)...
repoview: fix corrupted hiddencache crash Mercurial (issue5042) Before this patch if the hiddencache existed but was empty, it would crash mercurial. This patch adds exception handling when reading the hiddencache to avoid the issue. When encountering a corrupted cache file we print a devel warning. There would be no point in issuing a normal warning as the user wouldn't be able to do anything about the situation. The warning looks like: devel-warn: corrupted hidden cache, removing it at: /path/to/repoview.py

File last commit:

r27337:9a175761 default
r27917:97e0dc6d stable
Show More
mpatch.py
119 lines | 3.2 KiB | text/x-python | PythonLexer
# mpatch.py - Python implementation of mpatch.c
#
# Copyright 2009 Matt Mackall <mpm@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import cStringIO
import struct
StringIO = cStringIO.StringIO
# This attempts to apply a series of patches in time proportional to
# the total size of the patches, rather than patches * len(text). This
# means rather than shuffling strings around, we shuffle around
# pointers to fragments with fragment lists.
#
# When the fragment lists get too long, we collapse them. To do this
# efficiently, we do all our operations inside a buffer created by
# mmap and simply use memmove. This avoids creating a bunch of large
# temporary string buffers.
def patches(a, bins):
if not bins:
return a
plens = [len(x) for x in bins]
pl = sum(plens)
bl = len(a) + pl
tl = bl + bl + pl # enough for the patches and two working texts
b1, b2 = 0, bl
if not tl:
return a
m = StringIO()
def move(dest, src, count):
"""move count bytes from src to dest
The file pointer is left at the end of dest.
"""
m.seek(src)
buf = m.read(count)
m.seek(dest)
m.write(buf)
# load our original text
m.write(a)
frags = [(len(a), b1)]
# copy all the patches into our segment so we can memmove from them
pos = b2 + bl
m.seek(pos)
for p in bins: m.write(p)
def pull(dst, src, l): # pull l bytes from src
while l:
f = src.pop()
if f[0] > l: # do we need to split?
src.append((f[0] - l, f[1] + l))
dst.append((l, f[1]))
return
dst.append(f)
l -= f[0]
def collect(buf, list):
start = buf
for l, p in reversed(list):
move(buf, p, l)
buf += l
return (buf - start, start)
for plen in plens:
# if our list gets too long, execute it
if len(frags) > 128:
b2, b1 = b1, b2
frags = [collect(b1, frags)]
new = []
end = pos + plen
last = 0
while pos < end:
m.seek(pos)
p1, p2, l = struct.unpack(">lll", m.read(12))
pull(new, frags, p1 - last) # what didn't change
pull([], frags, p2 - p1) # what got deleted
new.append((l, pos + 12)) # what got added
pos += l + 12
last = p2
frags.extend(reversed(new)) # what was left at the end
t = collect(b2, frags)
m.seek(t[1])
return m.read(t[0])
def patchedsize(orig, delta):
outlen, last, bin = 0, 0, 0
binend = len(delta)
data = 12
while data <= binend:
decode = delta[bin:bin + 12]
start, end, length = struct.unpack(">lll", decode)
if start > end:
break
bin = data + length
data = bin + 12
outlen += start - last
last = end
outlen += length
if bin != binend:
raise ValueError("patch cannot be decoded")
outlen += orig - last
return outlen