##// END OF EJS Templates
exchange: move disabling of rev-branch-cache bundle part out of narrow...
exchange: move disabling of rev-branch-cache bundle part out of narrow I'm attempting to refactor changegroup code in order to better support alternate storage backends. The narrow extension is performing a lot of monkeypatching to this code and it is making it difficult to reason about how everything works. I'm reasonably certain I would be unable to abstract storage without requiring extensive rework of narrow. I believe it is less effort to move narrow code into core so it can be accounted for when changegroup code is refactored. So I'll be doing that. The first part of this is integrating the disabling of the cache:rev-branch-cache bundle2 part into core. This doesn't seem like it is related to changegroup, but narrow's modifications to changegroup are invasive and also require taking its code for bundle generation and exchange into core in order for the changegroup code to work. Differential Revision: https://phab.mercurial-scm.org/D4007

File last commit:

r34436:5326e4ef default
r38825:9b64b73d default
Show More
mpatch.py
128 lines | 3.3 KiB | text/x-python | PythonLexer
# mpatch.py - Python implementation of mpatch.c
#
# Copyright 2009 Matt Mackall <mpm@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import struct
from .. import pycompat
stringio = pycompat.bytesio
class mpatchError(Exception):
"""error raised when a delta cannot be decoded
"""
# This attempts to apply a series of patches in time proportional to
# the total size of the patches, rather than patches * len(text). This
# means rather than shuffling strings around, we shuffle around
# pointers to fragments with fragment lists.
#
# When the fragment lists get too long, we collapse them. To do this
# efficiently, we do all our operations inside a buffer created by
# mmap and simply use memmove. This avoids creating a bunch of large
# temporary string buffers.
def _pull(dst, src, l): # pull l bytes from src
while l:
f = src.pop()
if f[0] > l: # do we need to split?
src.append((f[0] - l, f[1] + l))
dst.append((l, f[1]))
return
dst.append(f)
l -= f[0]
def _move(m, dest, src, count):
"""move count bytes from src to dest
The file pointer is left at the end of dest.
"""
m.seek(src)
buf = m.read(count)
m.seek(dest)
m.write(buf)
def _collect(m, buf, list):
start = buf
for l, p in reversed(list):
_move(m, buf, p, l)
buf += l
return (buf - start, start)
def patches(a, bins):
if not bins:
return a
plens = [len(x) for x in bins]
pl = sum(plens)
bl = len(a) + pl
tl = bl + bl + pl # enough for the patches and two working texts
b1, b2 = 0, bl
if not tl:
return a
m = stringio()
# load our original text
m.write(a)
frags = [(len(a), b1)]
# copy all the patches into our segment so we can memmove from them
pos = b2 + bl
m.seek(pos)
for p in bins:
m.write(p)
for plen in plens:
# if our list gets too long, execute it
if len(frags) > 128:
b2, b1 = b1, b2
frags = [_collect(m, b1, frags)]
new = []
end = pos + plen
last = 0
while pos < end:
m.seek(pos)
try:
p1, p2, l = struct.unpack(">lll", m.read(12))
except struct.error:
raise mpatchError("patch cannot be decoded")
_pull(new, frags, p1 - last) # what didn't change
_pull([], frags, p2 - p1) # what got deleted
new.append((l, pos + 12)) # what got added
pos += l + 12
last = p2
frags.extend(reversed(new)) # what was left at the end
t = _collect(m, b2, frags)
m.seek(t[1])
return m.read(t[0])
def patchedsize(orig, delta):
outlen, last, bin = 0, 0, 0
binend = len(delta)
data = 12
while data <= binend:
decode = delta[bin:bin + 12]
start, end, length = struct.unpack(">lll", decode)
if start > end:
break
bin = data + length
data = bin + 12
outlen += start - last
last = end
outlen += length
if bin != binend:
raise mpatchError("patch cannot be decoded")
outlen += orig - last
return outlen